Clustering Routing Algorithm for Heterogeneous WSN with Energy Harvesting

2015 ◽  
Vol 733 ◽  
pp. 734-739 ◽  
Author(s):  
Xiang Nan Xu ◽  
Ming Bo Xiao ◽  
Wei Yan

Focus on the character of energy harvesting sensor network in heterogeneous sensor network and some shortage in SEP algorithm, an improved algorithm for EH-SEP is been proposed. EH-SEP considers both residual energy and energy support of nodes in cluster-head election process .Improved algorithm achieves higher probability that the advanced nodes with high residual energy to be cluster-head, and lower probability that the traditional nodes with low residual energy to be cluster-head. During the state of data sensing, this paper adopted multiple hop data transmission to avoid long distance communication between the cluster head and base station, so it can improve the network energy utilization. The simulation result shows that: EH-SEP algorithm is not only suitable for energy harvesting of wireless sensor network, but also effectively prolong the work time in the network stable stage.

2013 ◽  
Vol 765-767 ◽  
pp. 980-984
Author(s):  
Xi Rong Bao ◽  
Jia Hua Xie ◽  
Shuang Long Li

This article focused on the energy limit property of Wireless Sensor Network, and proposed a residual energy based algorithm WN-LEACH, with the classic network mode of LEACH routing algorithm. The algorithm combines the proportion of residual energy in the total energy with the cumulative number of the normal nodes supported by the cluster heads as a cluster selection reference. In order to balance the energy consumption of each cluster-head, the algorithm took both the different positions of the base station and the initial energy of the network into consideration, and weighted the two factors to balance the energy consumption between transmitting the signals and data fusion. Simulation results show that the algorithm can promote the lifetime of the uneven energy network and does not impair the effects of the LEACH algorithm.


2021 ◽  
Vol 22 (1) ◽  
pp. 1-13
Author(s):  
Vipul Narayan ◽  
A. K. Daniel

The enhancement of new technology in the sensor network shows a significant result in every aspect of life such as military surveillance, hospitals, mining and hospitals etc. The nodes are scattered randomly in RoI (Region of Interest) and data is transmitted to Base Station (BS) using the multi-hop technique. The Wireless Sensor Network (WSN) become an important research field for challenging problems as energy consumption, efficient cluster head selection process, routing algorithm, network strength, packet loss, energy loss and so forth. The agenda in the paper is to enhance Residual Energy (RE) of nodes and network lifetime. The problem is solved by using an efficient clustering and Cluster Head (CH) selection process.The cluster head selection is based on the maximum node residual energy and the minimum distance from the base station. The Proposed protocol worked in two stages. The new Threshold value T(H) is calculated for the cluster head selection process in the first stage. The data fusion method based on the trust function is used to get accurate data in the second stage. The energy model is utilized to reduce the excessive energy transmission inside the network. The Proposed protocol is compared with Stable Election Protocol and achieves 44% lifetime improvement, 59\% stability improvement and 15% in survival rate respectively.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


2017 ◽  
Vol 16 (7) ◽  
pp. 7031-7039
Author(s):  
Chamanpreet Kaur ◽  
Vikramjit Singh

Wireless sensor network has revolutionized the way computing and software services are delivered to the clients on demand. Our research work proposed a new method for cluster head selection having less computational complexity. It was also found that the modified approach has improved performance to that of the other clustering approaches. The cluster head election mechanism will include various parameters like maximum residual energy of a node, minimum separation distance and minimum distance to the mobile node. Each CH will create a TDMA schedule for the member nodes to transmit the data. Nodes will have various level of power for signal amplification. The three levels of power are used for amplifying the signal. As the member node will send only its own data to the cluster head, the power level of the member node is set to low. The cluster head will send the data of the whole cluster to the mobile node, therefore the power level of the cluster head is set to medium. High power level is used for mobile node which will send the data of the complete sector to the base station. Using low energy level for intra cluster transmissions (within the cluster) with respect to cluster head to mobile node transmission leads in saving much amount of energy. Moreover, multi-power levels also reduce the packet drop ratio, collisions and/ or interference for other signals. It was found that the proposed algorithm gives a much improved network lifetime as compared to existing work. Based on our model, multiple experiments have been conducted using different values of initial energy.


2020 ◽  
Author(s):  
Hamid Reza Farahzadi ◽  
Mostafa Langarizadeh ◽  
Mohammad Mirhosseini ◽  
Seyed Ali Fatemi Aghda

AbstractWireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zuo Chen ◽  
Min He ◽  
Wei Liang ◽  
Kai Chen

Wireless sensor network (WSN) is a kind of distributed and self-organizing networks, in which the sensor nodes have limited communication bandwidth, memory, and limited energy. The topology construction of this network is usually vulnerable when attacked by malicious nodes. Besides, excessive energy consumption is a problem that can not be ignored. Therefore, this paper proposes a secure topology protocol of WSN which is trust-aware and of low energy consumption, called TLES. The TLES considers the trust value as an important factor affecting the behavior of node. In detail, the TLES would take trust value, residual energy of the nodes, and node density into consideration when selecting cluster head nodes. Then, TLES constructs these cluster head nodes by choosing the next hop node according to distance to base station (BS), nodes’ degrees, and residual energy, so as to establish a safe, reliable, and energy saving network. Experimental results show that the algorithm can effectively isolate the malicious node in the network and reduce the consumption of energy of the whole network.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yu Han ◽  
Jian Su ◽  
Guangjun Wen ◽  
Yiran He ◽  
Jian Li

In the last decade, energy harvesting wireless sensor network (EHWSN) has been well developed. By harvesting energy from the surrounding environment, sensors in EHWSN remove the energy constraint and have an unlimited lifetime in theory. The long-lasting character makes EHWSN suitable for Industry 4.0 applications that usually need sensors to monitor the machine state and detect errors continuously. Most wireless sensor network protocols have become inefficient in EHWSN due to neglecting the energy harvesting property. In this paper, we propose CPEH, which is a clustering protocol specially designed for the EHWSN. CPEH considers the diversity of the energy harvesting ability among sensors in both cluster formation and intercluster communication. It takes the node’s information such as local energy state, local density, and remote degree into account and uses fuzzy logic to conduct the cluster head selection and cluster size allocation. Meanwhile, the Ant Colony Optimization (ACO) as a reinforcement learning strategy is utilized by CPEH to discover a highly efficient intercluster routing between cluster heads and the base station. Furthermore, to avoid cluster dormancy, CPEH introduces the Cluster Head Relay (CHR) strategy to allow the proper cluster member to undertake the cluster head that is energy depletion. We make a detailed simulation of CPEH with some famous clustering protocols under different network scenarios. The result shows that CPEH can effectively improve the network throughput and delivery ratio than others as well as successfully solve the cluster dormancy problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


Author(s):  
Ekaterina Andreevna Evstifeeva ◽  
Valeriy Dmitrievich Semeykin

Clustering, as one of the energy-efficient approaches, is widely used in wireless sensor networks. This method is based on creating clusters and selecting cluster head nodes in a wireless sensor network. Clustering saves network energy because data transfer is restricted between multiple nodes. Thus, clustering is provided between several nodes, and the service life of the wireless sensor network can be extended. Since the parent cluster node interacts with other nodes of the network, a node with a high level of residual energy must be selected to perform this role. When the energy level of the selected cluster head node becomes lower than the threshold value, then the re-election of this node takes place. It should be noted that multiple patterns of choosing cluster head nodes built using various parameters (residual node energy, distance from the base station to a node, distance between the head node and a cluster member, the number and proximity of neighboring nodes, etc.) lacked for a factor of energy consumption, i.e. how many times nodes communicated to each other. To cope with the problem, this paper presents a prognostic algorithm for selecting a cluster head node using fuzzy logic. This algorithm suggests using a number of input parameters, such as the residual energy of the node, the proximity of neighboring nodes, and the centralization of the node in the cluster. The proposed algorithm has been implemented using the software package MATLAB Fuzzy Logic Toolbox. The simulation results prove the advantages of the proposed technique; application of the input parameters mentioned above helps select optimal cluster head nodes in a wireless sensor network, which increases power efficiency of a wireless sensor network.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


Sign in / Sign up

Export Citation Format

Share Document