Experimental Study on Seismic Behavior of Masonry Walls with Window Openings Strengthened with Sprayed GFRP

2015 ◽  
Vol 744-746 ◽  
pp. 113-117
Author(s):  
Cheng Fang Sun ◽  
Chun Ming Chen ◽  
Qian Gu

A contrast investigation of the seismic behavior of unreinforced masonry walls with window openings strengthened with Carbon Fibre Reinforced Polymer (CFRP) sheets and sprayed Glass Fibre Reinforced Polymer (GFRP) is presented. Three wall specimens in the scale of 1/2 were tested by the horizontal cyclic loading combined with constant gravity loads. The seismic strengthening effects by two different FRP retrofitting schemes are compared in aspect of the hysteresis response, deterioration of rigidity and ability of energy dissipation. The experimental results indicate that the increasing degree of the improvement of seismic behavior of the SGFRP-strengthened wall are significantly superior to that of the wall strengthened with epoxy-based CFRP; and the overcoat of sprayed GFRP can bond tightly and work well together with the masonry to play a critical role in earthquake resistance.

2007 ◽  
Vol 34 (3) ◽  
pp. 331-339 ◽  
Author(s):  
C Klowak ◽  
A Memon ◽  
A A Mufti

This paper outlines the static and fatigue behavior of cast-in-place, second-generation steel-free bridge decks. Although cast monolithically, the first bridge deck was divided into three segments. The first segment was reinforced with steel, according to conventional design. The other two segments were steel-free designs with internal crack-control grids, one consisting of carbon-fibre-reinforced polymer (CFRP) and the other consisting of glass-fibre-reinforced polymer (GFRP). This hybrid CFRP or GFRP and steel strap design is called the second generation of the steel-free concrete bridge deck. The hybrid system limits the width of any longitudinal cracks that develop and eliminates corrosion from within the deck slab. All three segments were tested under cyclic loads of 222 and 588 kN to investigate fatigue behavior. The second bridge deck comprises an internal panel and two cantilevers and also incorporates a complete civionics system. The static tests outlined in this paper are useful in the development of the fatigue theory, which was derived from the fatigue testing of the first bridge deck.Key words: steel-free, cantilever, fatigue testing, static testing, glass-fibre-reinforced polymer, carbon-fibre-reinforced polymer, civionics.


Author(s):  
Shalini G V

The construction material mainly reinforced concrete is being used extensively for various type of construction projects. However, deterioration of RC structures is recognized as a major problem worldwide. Extension of the structures’ life is an inevitable need for a healthy planet. Any deficiency caused to the members of the structure may affect the life of structure. Therefore, it is important that the members should provide adequate strength (for which it is designed) throughout its operational life. But, it has been observed that due to alteration in purpose of use of structure (very common in mega cities), improper design and deficiency caused due to earthquake, blast and impacts in structural members and as a result in the members structure can possibly be subjected to loads which have higher magnitude compared to its design loads. This study is based on experimental investigation to assess the behavior of CFRP & GFRP wrapped concrete under compressive loads. For this purpose, M30 grade concrete specimens have been casted and wrapped it with Glass and Carbon FRP and its strength against compressive loads have been found.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
V. Gribniak ◽  
A. K. Arnautov ◽  
A. Norkus ◽  
R. Kliukas ◽  
V. Tamulenas ◽  
...  

Although the efficiency of steel fibres for improving mechanical properties (cracking resistance and failure toughness) of the concrete has been broadly discussed in the literature, the number of studies dedicated to the fibre effect on structural behaviour of the externally bonded elements is limited. This experimental study investigates the influence of steel fibres on the failure character of concrete elements strengthened with external carbon fibre reinforced polymer sheets. The elements were subjected to different loading conditions. The test data of four ties and eight beams are presented. Different materials were used for the internal bar reinforcement: in addition to the conventional steel, high-grade steel and glass fibre reinforced polymer bars were also considered. The experimental results indicated that the fibres, by significantly increasing the cracking resistance, alter the failure character from splitting of the concrete to the bond loss of the external sheets and thus noticeably increase the load bearing capacity of the elements.


2010 ◽  
Vol 37 (10) ◽  
pp. 1315-1330 ◽  
Author(s):  
M. A. Haddad ◽  
E. Shaheen ◽  
G. A. Parsekian ◽  
D. Tilleman ◽  
N. G. Shrive

Unreinforced hollow concrete masonry walls could be used to construct basements if strengthened to resist the lateral load. Two face-shell-bedded concrete masonry walls were constructed, 3 m high by 6 m long. As a simple strengthening technique, one wall was sprayed with glass-fibre-reinforced polymer (GFRP) on one side to a nominal average thickness of 5 mm. The walls were subjected to distributed point loading simulating increasing pressure from top to bottom of the wall. Support conditions were applied to simulate the walls being part of a basement. The plain wall failed with a failure line cracking pattern at a lateral load of 44 kN. The sprayed wall failed in a much more brittle fashion when the load reached 330 kN. The GFRP suffered a mode III tear at the bottom course. The results indicate that spraying a plain masonry wall with GFRP increases its ability to resist lateral load considerably, and that the process could be improved in terms of both the thickness of the layer and the area of wall covered to achieve a specific target. The two walls were analyzed using the yield-line, fracture-line, and failure-line methods. The failure-line method was improved by accounting for the stiffness orthotropy of masonry and gave the most accurate prediction of these plastic design methods. A finite element model of the masonry provided the most accurate prediction of capacity.


2014 ◽  
Vol 578-579 ◽  
pp. 1357-1360
Author(s):  
Cheng Fang Sun ◽  
Xiao Yan Zhang ◽  
Qian Gu

A contrast investigation of the seismic behavior of unreinforced masonry walls with window openings strengthened with Carbon Fiber Reinforced Polymer (CFRP) sheets and sprayed Glass Fiber Reinforced Polymer (GFRP) is presented. Three wall specimens in the scale of 1/2 were tested by the horizontal cyclic loading combined with constant gravity loads. The seismic strengthening effects by two different FRP retrofitting schemes are compared in aspect of the failure modes, shear capacity, hysteresis response, deterioration of rigidity and ability of energy dissipation. The experimental results indicate that the increasing degree of shear capacity and the improvement of seismic behavior of the SGFRP-strengthened wall are significantly superior to that of the wall strengthened with epoxy-based CFRP; and the overcoat of sprayed GFRP can bond tightly and work well together with the masonry to play a critical role in earthquake resistance.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Zhen Pei Chow ◽  
Zaini Ahmad ◽  
King Jye Wong ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal–composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium–glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen’s edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.


Sign in / Sign up

Export Citation Format

Share Document