Methodology and Warm Prestressing Effect for Pressurized Thermal Shock Analysis in Nuclear Power Plant

2015 ◽  
Vol 750 ◽  
pp. 104-113
Author(s):  
Gui An Qian ◽  
Markus Niffenegger

One potential challenge to the integrity of the reactor pressure vessel (RPV) in a pressurized water reactor is posed by pressurized thermal shock (PTS). Therefore, the safety of the RPV with regard to neutron embrittlement has to be analyzed. In this paper, the procedure and method for the structural integrity analysis of RPV subjected to PTS is presented. The FAVOR code is applied to calculate the probabilities for crack initiation and failure by considering crack distributions based on cracks observed in the Shoreham and PVRUF RPVs in the U.S. A local approach to fracture, i.e. the σ*-A* model is used to predict the warm prestressing (WPS) effect on the RPV integrity. The results show that the remaining stress contributes to the WPS effect, whereas the increase of fracture toughness is not completely attributed to the remaining stress. The modeled load paths predict a material toughness increase of 30-100%.

Author(s):  
Hsoung-Wei Chou ◽  
Chin-Cheng Huang

The failure probability of the pressurized water reactor pressure vessel for a domestic nuclear power plant in Taiwan has been evaluated according to the technical basis of the USNRC’s new pressurized thermal shock (PTS) screening criteria. The ORNL’s FAVOR code and the PNNL’s flaw models are employed to perform the probabilistic fracture mechanics analysis based on the plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and the probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule are applied as the loading condition. Besides, an RT-based regression formula derived by the USNRC is also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR reactor pressure vessel has sufficient structural margin for the PTS attack until either the end-of-license or for the proposed extended operation.


Author(s):  
Terry L. Dickson ◽  
Shah N. Malik ◽  
Mark T. Kirk ◽  
Deborah A. Jackson

The current federal regulations to ensure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models that were developed in the early to mid 1980s. Since that time, there have been advancements in relevant technologies associated with the physics of PTS events that impact RPV integrity assessment. Preliminary studies performed in 1999 suggested that application of the improved technology could reduce the conservatism in the current regulations while continuing to provide reasonable assurance of adequate protection to public health and safety. A relaxation of PTS regulations could have profound implications for plant license extension considerations. Based on the above, in 1999, the United States Nuclear Regulatory Commission (USNRC) initiated a comprehensive project, with the nuclear power industry as a participant, to re-evaluate the current PTS regulations within the framework established by modern probabilistic risk assessment (PRA) techniques. During the last three years, improved computational models have evolved through interactions between experts in the relevant disciplines of thermal hydraulics, PRA, human reliability analysis (HRA), materials embrittlement effects on fracture toughness (crack initiation and arrest), fracture mechanics methodology, and fabrication-induced flaw characterization. These experts were from the NRC staff, their contractors, and representatives from the nuclear industry. These improved models have now been implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code, which is an applications tool for performing risk-informed structural integrity evaluations of embrittled RPVs subjected to transient thermal-hydraulic loading conditions. The baseline version of FAVOR (version 1.0) was released in October 2001. The updated risk-informed computational methodology in the FAVOR code is currently being applied to selected domestic commercial pressurized water reactors to evaluate the adequacy of the current regulations and to determine whether a technical basis can be established to support a relaxation of the current regulations. This paper provides a status report on the application of the updated computational methodology to a commercial pressurized water reactor (PWR) and discusses the results and interpretation of those results. It is anticipated that this re-evaluation effort will be completed in 2002.


Author(s):  
M. Niffenegger ◽  
O. Costa Garrido ◽  
D. F. Mora ◽  
G. Qian ◽  
R. Mukin ◽  
...  

Abstract Integrity assessment of reactor pressure vessels (RPVs) can be performed either by deterministic fracture mechanics (DFM) or/and by probabilistic fracture mechanics (PFM) analyses. In European countries and Switzerland, only DFM analyses are required. However, in order to establish the probabilistic approach in Switzerland, the advantages and shortcomings of the PFM are investigated in the frame of a national research project. Both, the results from DFM and PFM depend strongly on the previous calculated thermal-hydraulic boundary conditions. Therefore, complete integrity analyses involving several integrated numerical codes and methods were performed for a reference pressurized water reactor (PWR) RPV subjected to pressurized thermal shock (PTS) loads. System analyses were performed with the numerical codes RELAP5 and TRACE, whereas for structural and fracture mechanics calculations, the FAVOR and ABAQUS codes were applied. Additional computational fluid dynamics analyses were carried out with ANSYS/FLUENT, and the plume cooling effect was alternatively considered with GRS-MIX. The results from the different analyses tools are compared, to judge the expected overall uncertainty and reliability of PTS safety assessments. It is shown that the scatter band of the stress intensities for a fixed crack configuration is rather significant, meaning that corresponding safety margins should be foreseen. The conditional probabilities of crack initiation and RPV failure might also differ, depending on the considered random parameters and applied rules.


Author(s):  
Zhanpeng Lu ◽  
Tetsuo Shoji ◽  
He Xue ◽  
Chaoyang Fu

Several Ni-base alloys and their weld metals such as Alloy 600 and Alloy 82/182 suffered from stress corrosion cracking in pressurized water reactor primary water environments. Materials Reliability Program (MRP) proposed a CGR disposition curve in a report MRP 55 for PWSCC of thick-section Alloy 600 materials. This deterministic CGR equation has been adopted by Section XI Nonmandatory Appendix O of the ASME Boiler and Pressure Code for flaw evaluation. MRP also proposed a CGR disposition curve in MRP report 115 for PWSCC of Alloy 82/182/132 weld metals. In the same fashion, JSME and JNES also provided CGR disposition curves in the flaw evaluation procedure in structural integrity analysis. Stress intensity factor (K), temperature and thermal activation energy are included in both MRP 55 and MRP 115 reports. Both MRP 55 and MRP 115 are engineering-based rather than mechanism-based. The fundamental correlations such as crack growth rate vs. K are quantified based on the theoretical model and screened experimental data, which are compared to the reported disposition curves and used for improving the prediction.


Author(s):  
Xiaoyong Ruan ◽  
Toshiki Nakasuji ◽  
Kazunori Morishita

The structural integrity of a reactor pressure vessel (RPV) is important for the safety of a nuclear power plant. When the emergency core cooling system (ECCS) is operated and the coolant water is injected into the RPV due to a loss-of-coolant accident (LOCA), the pressurized thermal shock (PTS) loading takes place. With the neutron irradiation, PTS loading may lead a RPV to fracture. Therefore, it is necessary to evaluate the performance of RPV during PTS loading to keep the reactor safety. In the present study, optimization of RPV maintenance is considered, where two different attempts are made to investigate the RPV integrity during PTS loading by employing the deterministic and probabilistic methodologies. For the deterministic integrity evaluation, 3D-CFD and finite element method (FEM) simulations are performed, and stress intensity factors (SIFs) are obtained as a function of crack position inside the RPV. As to the probabilistic integrity evaluation, on the other hand, a more accurate spatial distribution of SIF on the RPV is calculated. By comparing the distribution thus obtained with the fracture toughness included as a part of the master curve, the dependence of fracture probabilities on the position inside the RPV is obtained. Using the spatial distribution of fracture probabilities in RPV, the priority of the inspection and maintenance is finally discussed.


1989 ◽  
Vol 111 (3) ◽  
pp. 234-240 ◽  
Author(s):  
G. Yagawa ◽  
Y. Ando ◽  
K. Ishihara ◽  
T. Iwadate ◽  
Y. Tanaka

An urgent problem for nuclear power plants is to assess the structural integrity of the reactor pressure vessel under pressurized thermal shock. In order to estimate crack behavior under combined force of thermal shock and tension simulating pressurized thermal shock, two series of experiments are demonstrated: one to study the effect of material deterioration due to neutron irradiation on the fracture behavior, and the other to study the effect of system compliance on fracture behavior. The test results are discussed with the three-dimensional elastic-plastic fracture parameters, J and Jˆ integrals.


1984 ◽  
Vol 106 (3) ◽  
pp. 223-229 ◽  
Author(s):  
P. S. Jackson ◽  
D. S. Moelling

A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology.


Author(s):  
Tao Hongxin ◽  
He Yinbiao ◽  
Cao Ming ◽  
Shen Rui

One of the fundamental requirements on nuclear safety is to prevent the radioactive material from being released. Therefore, it is paramount to maintain the structural integrity of the pressure boundary of the reactor coolant system. The reactor pressure vessel (RPV), under high temperature, high pressure and high radiation in operation, is the most important as well as a Class I nuclear safety equipment. For a pressurized water reactor (PWR), the life of the RPV determines the service life of the entire nuclear power plant. The key factor controlling the life of a RPV is the accumulation of the neutron flux and which induces irradiation embrittlement degrading the anti-fracture capability of the RPV material. Several anti-fracture capability assessments carried out for the Qinshan 320MWe (QS1) RPV, such as (a) the structural integrity assessment against pressurized thermal shocks; (b) the fracture mechanics assessment under irradiation; (c) the P-T limit curves revised; (d) the evaluation of USE. They all demonstrated that the structural integrity of the QS1 RPV would be maintained for the extended service life.


Author(s):  
Stephen M. Parker ◽  
Nathan A. Palm ◽  
Xavier Pitoiset

Plants in the United States (U.S.) and many plants outside of the U.S. are required to meet the regulations of the Pressurized Thermal Shock (PTS) Rule, 10 CFR 50.61. The Alternate Pressurized Thermal Shock (PTS) Rule (10 CFR 50.61a) was approved by the U.S. Nuclear Regulatory Commission (NRC) and included in the Federal Register, with an effective date of February 3, 2010. This Alternate Rule provides a new metric and screening criteria for PTS. This metric, RTMAX-X, and the corresponding screening criteria are far less restrictive than the RTPTS metrics and screening criteria in the original PTS Rule (10 CFR 50.61). The Alternate PTS Rule was developed through probabilistic fracture mechanics (PFM) evaluations performed for selected U.S. pilot plants. A Generalization Study was also performed which determined that the plants used for these evaluations were representative of and applicable to the U.S. Pressurized Water Reactor (PWR) nuclear power plant fleet. Plants outside of the U.S. may be interested in implementing the Alternate PTS Rule. However, direct implementation of the Alternate PTS Rule may not be possible due to differences in plant design, embrittlement prediction techniques, inservice inspection requirements, etc. The objective of this paper is to explore the use the Alternate PTS Rule by PWR plants outside of the U.S. by proposing methods to account for the potential differences mentioned above.


Sign in / Sign up

Export Citation Format

Share Document