Nitrate Removal from Domestic Wastewater by Using Denitrification Limestone Filter

2014 ◽  
Vol 1051 ◽  
pp. 578-582
Author(s):  
Rafidah binti Hamdan ◽  
Tengku Nur Zulaikha ◽  
Izzati Izwani Ibrahim

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, in the previous works in the UK the system was outperformed in removing ammonia nitrogen with limited nitrate removal. Hence, the present study was carried out to investigate the removal of nitrate from domestic wastewater through denitrification process using a lab-scale limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The treatments were run in lab-scale limestone denitrification filter for 10 weeks. Effluent from nitrification filter was passing through the limestone denitrification filter as influent for further treatment. The in fluent and effluent of the filter system have been sampled and analyzed on biweekly basis for selected parameters including pH, alkalinity, temperature, dissolved oxygen, nitrate and ammonia nitrogen to monitor the effectiveness of the filter. Results from this study show that denitrification process has took place even the percentages of nitrate removal were considerably low but it seems promising with some modification of designing the the limestone filter to enhance denitrification process. The highest removal rate was 17.66%. Low removal of nitrate was inhibited within the filter system might be due to the high DO concentration as it was found that the range of DO was 4.75-7.78 mg/L. To permit the denitrification process to take place within the filter system, it is required an anoxic condition in the presence of nitrate with minimum DO concentration. Consequently, some modifications to the filter design will be considered in the future research in order to enhance the removal of nitrate through denitrification process.

2015 ◽  
Vol 752-753 ◽  
pp. 232-237
Author(s):  
Rafidah binti Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Ain Nabila Abdul Talib

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, the optimization study under warm climate has not yet been developed. Hence, the present study was carried out to investigate the removal of ammonia nitrogen (AN) from domestic wastewater through nitrification process using a lab-scale vertical aerated limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The experiment has been carried out for 10 weeks. The influent and effluent of the vertical aerated limestone filter system have been sampled and analyzed on biweekly basis for selected parameters including AN, Total Kjedhal Nitrogen (TKN), pH, alkalinity, temperature and dissolved oxygen to monitor the effectiveness of the filter. Results from this study show that nitrification process has took place within the aerated limestone filter as the results from laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of AN was ranged from 85 % to 92 % and the removal percentage of TKN was ranged from 83.52 % - 91.67 %. The temperature was in the average of 26.3oC±0.75, pH value average of , DO was from 6.64 mg/L to 7.75 mg/L , and the alkalinity was from 15 to 110 mg / l as CaCO3 . Therefore, from this study it can be concluded that aerated rock filter system has high potential in removing AN and TKN. It is also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2015 ◽  
Vol 773-774 ◽  
pp. 1350-1354
Author(s):  
Rafidah Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Siti Zahirah Haron

Excessive nitrogen in domestic wastewater discharge accelerates eutrophication in an aquatic ecosystem. To treat wastewater high in nitrogen conventionally are more expensive, complex and generate high amount of sludge. In line with this situation, rock filters (RF) emerged as one of attractive natural wastewater treatment method to treat wastewater high in nutrient because this filter system is easier to maintain, using low-cost filter media, and environmentally-friendly technology. However, studies on the removal of nitrogen in the system are still limited due to nitrification study under warm climate. Thus, an aerated rock filter system has been designed in this study to remove ammonia nitrogen from domestic wastewater using the recommended hydraulic loading rate in warm climate condition. The laboratory aerated rock filter system has been in operated for 2 months with 5 weeks of sampling. The filter influent and effluent samples have been collected and analyzed twice a week for Total Kjeldhal Nitrogen (TKN), ammonia nitrogen (AN), nitrates ,pH, temperature, DO and alkalinity to monitor the filter performance in removing nitrogen. Results from the laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of ammonia nitrogen was ranged from 66.05 % to 91.30 % and the removal percentage of TKN was ranged from 63.23 % to 87.68 %. The temperature was in the range of 25°C to 27.5°C, pH value was in the range of 6.34 to 8.04, DO was from 6.64 mg/L to 7.75 mg/L, and the alkalinity was from 15 to 110 as mg /L CaCO3. Therefore, from this laboratory experiment it can be concluded that aerated rock filter system has high potential in removing AN and TKN. The system also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2011 ◽  
Vol 383-390 ◽  
pp. 3707-3712
Author(s):  
L M Yuan ◽  
C Y Zhang ◽  
R Yan ◽  
G Z Zhao ◽  
L J Tian ◽  
...  

An innovative step-feed Anaerobic-multiple Anoxic/Oxic-Membrane Bioreactor [An-M(A/O-MBR] process was developed to treat synthetic domestic wastewater. Performance of the lab-scale system was investigated at different dissolved oxygen (DO) concentration (0.4-2.4mg/L) in the aerobic tank of the multiple A/O zone. The results showed that, under the conditions imposed, the DO level has no obvious influence on COD removal and the removal efficiency was more than 94% throughout the operation. However, DO levels have great influence on nitrogen and phosphorus removal. Better nitrification performance(>99%) could be obtained when DO was in the range of 0.8~2.4mg/L. High total nitrogen (TN) and total phosphorus (TP) removal performance can be obtained when DO was in the range of 0.8~1.2mg/L, the average removal efficiency was 74.81% and 71.41%, respectively. In this condition, DO can meet the demand of nitrification and phosphorus uptake simultaneously, and the simultaneous nitrification and denitrification (SND) occurred in the aerobic tanks under 1ower DO concentration. Meanwhile, since the DO circulated from the aerobic tank to the anoxic tank decreased, denitrification was enhanced and the nitrate quantity in the sludge recycle system decreased, resulting in the decrease of carbon substrate competition between denitrifcation and phosphorus release in the anaerobic zone. Ultimately, the performance of TN and TP removal was enhanced.


2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


Fishes ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Jie Cao ◽  
Qi Wang ◽  
Jun Mei ◽  
Jing Xie

This study evaluated the effect of different concentrations (20, 40 and 60 mg/L) of 3-aminobenzoic acid ethyl ester methanesulfonate (MS-222) on the quality changes in turbot during simulated transport in water. The results showed that the ammonia nitrogen content in the transportation water of each sample increased significantly, and the dissolved oxygen level decreased. The dissolved oxygen content in MS-222-treated samples was higher than that of control group (CK) samples. For turbot flesh quality, simulated transport in water led to a decrease in moisture, fat and protein contents in all samples. The MS-222-treated turbot samples showed higher pH values, glycogen contents, springiness and chewiness values and lower lactic acid contents comparing with the CK samples during simulated transport in water. In addition, the fresh and bitter amino acids in the muscle of turbot increased in each treatment group compared to the non-transported fish at the end of the simulated transport. The results showed that MS-222 treatment could retard the turbot transport stress and improve the quality of turbot during simulated transport in water.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Augustine Chung Wei Yap ◽  
Hwang Sheng Lee ◽  
Joo Ling Loo ◽  
Nuruol Syuhadaa Mohd

AbstractpH, oxidation-reduction potential (ORP) and dissolved oxygen (DO) concentration are important parameters in water quality surveillance and treatment. The changes of these parameters are associated with electron density in water. Several techniques including electrolysis and catalysis which require redox reactions and electron exchange are employed to improve these parameters. In recent years, studies reported that magnetic effects can impart considerable changes on the pH, ORP and DO concentration of water. However, the correlation between electron density and magnetic effects on these parameters has yet to be disclosed despite the fact that increased electron density in water could improve water’s reductive properties, heat capacity and hydrogen bonding characteristics. In this study, the magnetic effects on pH, ORP and DO concentration were investigated using different magnets arrangements and water flow rates based on reversed electric motor principle. Results showed that the improvement of pH, ORP and DO concentration from 5.40–5.42 to 5.58–5.62 (+ 3.5%), 392 to 365 mV (− 6.9%), and 7.30 to 7.71 mg L− 1 (+ 5.6%), respectively were achieved using combined variables of non-reversed polarity magnet arrangement (1000–1500 G magnetic strength) and water flow rate of 0.1–0.5 mL s− 1. Such decrement in ORP value also corresponded to 8.0 × 1013 number of electron generation in water. Furthermore, Raman analysis revealed that magnetic effect could strengthen the intermolecular hydrogen bonding of water molecules and favor formation of smaller water clusters. The findings of this study could contribute to potential applications in aquaculture, water quality control and treatment of cancer attributed to free radical induced-oxidative stress.


2015 ◽  
Vol 41 (1) ◽  
pp. 13-19
Author(s):  
Kaniz Fatema ◽  
Wan Maznah Wan Omar ◽  
Mansor Mat Isa

Water quality in three different stations of Merbok estuary was investigated limnologically from October, 2010 to September, 2011. Water temperature, transparency and total suspended solids (TSS) varied from 27.45 - 30.450C, 7.5 - 120 cm and 10 -140 mg/l, respectively. Dissolved Oxygen (DO) concentration ranged from 1.22-10.8 mg/l, while salinity ranged from 3.5-35.00 ppt. pH and conductivity ranged from 6.35 - 8.25 and 40 - 380 ?S/cm, respectively. Kruskal Wallis H test shows that water quality parameters were significantly different among the sampling months and stations (p<0.05). This study revealed that DO, salinity, conductivity and transparency were higher in wet season and TSS was higher in dry season. On the other hand, temperature and pH did not follow any seasonal trends.Bangladesh J. Zool. 41(1): 13-19, 2013


2014 ◽  
Vol 665 ◽  
pp. 487-490
Author(s):  
Te Wang ◽  
Zhao Xia Liu ◽  
Mei Juan Wu ◽  
Fu Hui Kang ◽  
Qing Chen ◽  
...  

A bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of ammonia-nitrogen was screened and identified and the denitrification property was investigated in this paper. The strain was isolated from aeration tank of wastewater disposed by activated sludge and analyzed and identified by 16S rDNA. The effects of different carbon sources and carbon and nitrogen mass ratios on denitrification rate were studied. The changes of various forms of ammonia-nitrogens during the simultaneous heterotrophic nitrification and aerobic denitrification process were characterized. A strain capable of simultaneous heterotrophic nitrification and aerobic denitrification at 600 mg/L nitrogen concentration has been isolated and screened. Comparison of its 16S rDNA sequence showed 100% similarity to Bacillus licheniformis strain Lr124/6. The strain was named as Bacillus sp. A22. The optimal conditions for degradation of ammonia-nitrogen by Bacillus sp. A22 were trisodium citrate as carbon source and carbon and nitrogen mass ratios of 10. The denitrification rate was 98.2% after 96 h of culture under the optimal conditions and there was hardly any intermediates accumulation in the denitrification process. It has practical applications that the denitrification can be performed efficiently at high concentrations of ammonia-nitrogen by method of simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp. A22 in nitrogen purification treatment of wastewater with high concentrations of ammonia-nitrogen.


Sign in / Sign up

Export Citation Format

Share Document