Research Progress in Enhancement Technology of Phytoremediation

2015 ◽  
Vol 768 ◽  
pp. 150-154
Author(s):  
Yi Yun Liu ◽  
Shuang Cui ◽  
Qing Han ◽  
Qian Ru Zhang

Due to the influence of human, industrial and agricultural activity, a large amount of toxic and harmful heavy metal enter into the soil environment. Heavy metal can easily bio-accumulate through food chain, which cause serious damage to human health. Phytoremediation emerges as a new technology in exploration of effective methods for remediation and rebuild of heavy metal contaminated soils. Although phytoremediation shows great potential in remediation of heavy metal contaminated soil, there still exists many problems in practical application. This article analysis the problems existing in phytoremediation, summarizes the research progress of the technology in application from all the perspective of phytoremediation processes.

RSC Advances ◽  
2020 ◽  
Vol 10 (44) ◽  
pp. 26090-26101
Author(s):  
Menglong Xu ◽  
Yazi Liu ◽  
Yan Deng ◽  
Siyuan Zhang ◽  
Xiaodong Hao ◽  
...  

Bioremediation can be a promising and effective remediation technology for treating Cd contaminated soils. Cooperative bioremediation using heterotrophic and autotrophic mixtures proved to be an efficient, short-term bioremediation strategy for heavy metal contaminated soil.


2013 ◽  
Vol 726-731 ◽  
pp. 1764-1769
Author(s):  
Qing Feng Chen ◽  
Hong Yan Yang ◽  
Jun Jian Ma ◽  
Wen Guo Dong ◽  
Meng Liu

The traditional water treatment technologies mainly include physical reparation technology, chemical remediation technology and biological-ecological restoration technology. However, there are many limitations in practical application, especially for heavy polluted river. For this reason, it is extremely urgent to explore new technology and method on river ecosystem restoration. The materials of artificial plants are limited to the factors of water transparency, possesses acid and alkali-resistant, resistance to staining and flexibility. The characteristics of artificial plants are low in investment, effective and no secondary pollution. Therefore, it has a broad prospect of application in water treatment. In this paper, the detailed review and application of artificial plants were involved in order to provide theoretical basis for more widely used of artificial aquatic plants.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chen-Yao Chu ◽  
Tzu-Hsing Ko

Heavy metal-contaminated soils were leached with various acid reagents, and a series of treatments was assessed to understand soil fertility after acid leaching. Aqua regia digestion and a five-step sequential extraction procedure were applied to determine heavy metal distribution. The average total concentrations of Zn, Cd, Cu, and Pb for contaminated soil were 1334, 25, 263, and 525 mg·kg−1 based on the ICP/AES quantitative analysis. Other than Pb extracted by H2SO4, over 50% removal efficiency of other heavy metals was achieved. A five-step sequential extraction revealed that the bound-to-carbonate and bound-to-Fe-Mn oxides were the major forms of the heavy metals in the soil. The addition of organic manure considerably promoted soil fertility and increased soil pH after acid leaching. Seed germination experiments demonstrated that after acid leaching, the soil distinctly inhibited plant growth and the addition of manure enhanced seed germination rate from 35% to 84%. Furthermore, the procedure of soil turnover after acid leaching and manure addition greatly increased seed germination rate by 61% and shortened the initial germination time. Seed germination in untreated soil was superior to that in acid-leached soil, illustrating that the phytotoxic effect of acid leaching is more serious than that of heavy metals.


2021 ◽  
Vol 2 (4) ◽  
pp. 53-58
Author(s):  
Hasnain Raza ◽  

As anthropogenic activities rise over the world, representing an environmental threat, soil contamination and treatment of polluted areas have become a worldwide concern. Bioremediation is a sustainable technique that could be a cost-effective mitigating solution for heavy metal-polluted soil regeneration. Due to the difficulties in determining the optimum bioremediation methodology for each type of pollutant and the lack of literature on soil bioremediation, we reviewed the main in-situ type, their current properties, applications, and techniques, plants, and microbe’s efficiency for treatment of contaminated soil. In this review, we describe the deeper knowledge of the in-situ types of bioremediation and their different pollutant accumulation mechanisms.


2019 ◽  
Vol 7 (9) ◽  
pp. 357 ◽  
Author(s):  
Moonsuk Hur ◽  
Soo-Je Park

Heavy metal pollution is a serious environmental problem as it adversely affects crop production and human activity. In addition, the microbial community structure and composition are altered in heavy-metal-contaminated soils. In this study, using full-length 16S rRNA gene sequences obtained by a PacBio RS II system, we determined the microbial diversity and community structure in heavy-metal-contaminated soil. Furthermore, we investigated the microbial distribution, inferred their putative functional traits, and analyzed the environmental effects on the microbial compositions. The soil samples selected in this study were heavily and continuously contaminated with various heavy metals due to closed mines. We found that certain microorganisms (e.g., sulfur or iron oxidizers) play an important role in the biogeochemical cycle. Using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, we predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) functional categories from abundances of microbial communities and revealed a high proportion belonging to transport, energy metabolism, and xenobiotic degradation in the studied sites. In addition, through full-length analysis, Conexibacter-like sequences, commonly identified by environmental metagenomics among the rare biosphere, were detected. In addition to microbial composition, we confirmed that environmental factors, including heavy metals, affect the microbial communities. Unexpectedly, among these environmental parameters, electrical conductivity (EC) might have more importance than other factors in a community description analysis.


Author(s):  
Xiaoyu Qi ◽  
Xiaoming Xu ◽  
Chuanqing Zhong ◽  
Tianyi Jiang ◽  
Wei Wei ◽  
...  

Soil contaminated with Cd and Pb has caused sharp decrease of cultivatable soil and has been attracting increasing attention. Biosurfactants are efficient in solving the problem. However, little information is available about the influence of sophorolipids (SLs) on the remediation of Cd- or Pb-contaminated soil. The sophorolipids produced by Starmerella bombicola CGMCC 1576 were used to study the effects of Cd and Pb removal in batch soil washing from artificially contaminated soil. The removal efficiency of crude total SLs was better than both distilled water and synthetic surfactants. Furthermore, 83.6% of Cd and 44.8% of Pb were removed by 8% crude acidic SLs. Acidic SLs with high water solubility were more effective than lactonic SLs in enhancing remediation of heavy metal-contaminated soils. The complexation of Cd with the free carboxyl group of the acidic SLs was observed by Fourier-transform infrared spectroscopy study, and this complexation was effective in heavy metal removal from the soil. The fermentation broth of S. bombicola, without further preparation, removed 95% of Cd and 52% of Pb. These results suggested that SLs produced by S. bombicola could function as potential bioremediation agents for heavy metal-contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document