Operating Mode Simulation of the Micro HPP Hydro-Generator

2015 ◽  
Vol 770 ◽  
pp. 359-364
Author(s):  
Boris V. Lukutin ◽  
E.B. Sandarova ◽  
D.L. Matukhin ◽  
I.L. Fuks

In the paper operating mode simulation of a hydro-generator with armature winding taps, running under standalone load with thyristor auto ballast stabilization system of magnitude and frequency of the output voltage of a hydraulic unit has been conducted. The created model enabled to investigate steady-state operation of the plant when connecting ballast load to various winding taps of the hydraulic generator subject to power change of the plant workload. Stabilization of the magnitude and phase of hydro-generator equivalent load as well as the distortion degree of output voltage for each stage of ballast have been evaluated. Ballast stage control algorithm and control laws of gate switching angles of ballast regulator have been proposed. Studies were undertaken within the scope of the RFBR grant entitled “Research and development of micro hydro power plant control systems for the power supply of standalone consumers”.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Kalamchety Srinivasa Ravi Kumar ◽  
Alagappan Pandian ◽  
Vedula Venkata Sastry ◽  
Dogga Raveendhra

In this paper, a new type of capacitor clamped coupled inductor bidirectional DC–DC converter is proposed, which offers high voltage gain with smooth starting current transients, as well as reduced stresses on the capacitor. Steady state operation, mathematical modelling, and state space modelling for the proposed converter are presented in detail. A simplified single voltage clamped circuit is developed to mitigate the voltage spikes caused due to the coupled inductor by recovering the leakage energy effectively. Moreover, the clamping capacitor helps in reducing the ripples in output voltage, which in effect significantly reduces the stress on the switch and offers less ripple content at the load terminals. Simulation of the proposed converter is carried out using Simulink/MATLAB for the conversion of 24V DC to 200V DC. For this conversion, simulation results have proven that there is reduction of 13.64% of capacitor voltage stresses. Further, under line varying conditions, converter responses have proven that there is a 119% and 25.25% reduction in input current and output voltage transients, respectively. Similarly, 25.25% and 76.5% transient reductions of input current are observed for line and control parameter variations. The hardware investigation of the converter was carried out with a 100 W, 24 V/200 V setup. The converter achieved efficiency of 93.8%. The observations supplement the simulation results.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


Author(s):  
Trong-Thang Nguyen

<p>In this study, the author analyzes the advantages and disadvantages of multi-level inverter compared to the traditional two-level inverter and then chose the suitable inverter. Specifically, the author analyzes and designs the three-level inverter, including the power circuit design and control circuit design. All designs are verified through the numerical simulation on Matlab. The results show that even though the three-level inverter has a low number of switches (only 12 switches), but the quality is very good: the total harmonic distortion is small; the output voltage always follows the reference voltage.</p>


Author(s):  
Amirov Sultan Fayzullayevich Et.al

The article discusses the issue of introducing a correction factor for protection and control devices, as the value of the secondary current in a certain range of the auto-adjustable current transformer does not correspond to the value of the secondary current in another range determined by the difference of magnetic driving forces generated by the components of the primary current. Alternatively, an algorithm has been developed to account for the measurement error in this condition in an automatic system that controls the operating mode of the current transformer. It was also found that the output data should be transmitted taking into account the correction factor in order to ensure the proper operation of the protection and measuring devices when the current transformer is switched to another measuring range in the measuring range.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 169 ◽  
Author(s):  
Helen Durand

Recent cyberattacks against industrial control systems highlight the criticality of preventing future attacks from disrupting plants economically or, more critically, from impacting plant safety. This work develops a nonlinear systems framework for understanding cyberattack-resilience of process and control designs and indicates through an analysis of three control designs how control laws can be inspected for this property. A chemical process example illustrates that control approaches intended for cyberattack prevention which seem intuitive are not cyberattack-resilient unless they meet the requirements of a nonlinear systems description of this property.


2020 ◽  
Vol 12 (24) ◽  
pp. 10464
Author(s):  
Amirhossein Rajaei ◽  
Mahdi Shahparasti ◽  
Ali Nabinejad ◽  
Mehdi Savaghebi

In this paper, a new modified structure of a DC/DC T-source converter is proposed. Since the proposed converter provides high voltage gain, it is suitable for photovoltaic integration into uninterruptible power supply (UPS) systems. The proposed structure employs partial power processing technique to increase the output voltage as well as efficiency without requiring new hardware. Partial power converters (PPCs) process only a fraction of flowing power while the remaining power directly flows through output. This generally causes an improvement in efficiency and output voltage. A total of two structures are presented: conventional partial power T-source converters and improved partial power T-source converters. The key advantage of the improved partial power converter is a higher voltage gain. Furthermore, it reduces the voltage and the current stresses on switches and diodes. The steady-state operation principles are described for both converters and the governed rules and equations are derived. The PPCs and full power converter are compared in terms of efficiency, voltage gain, voltage stress, and current stress of converter elements. The converter performance is evaluated through experimental and simulation studies. The presented results show good consistency with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document