Simulation of a Differential-Drive Wheeled Mobile Lego Robot Mindstorms NXT

2015 ◽  
Vol 776 ◽  
pp. 319-324
Author(s):  
I. Wayan Widhiada ◽  
C.G. Indra Partha ◽  
Yuda A.P. Wayan Reza

The aim of this paper is to model and simulate kinematics motion using the differential drive model of a mobile Lego robot Mindstorm NXT. The author’s use integrated two software as a method to solve the simulation of mobile lego robot mindstorms NXT using Matlab/Simulink and Solidworks software. These softwares are enable easier 3D model creation for both simulation and hardware implementation. A fundamental of this work is the use of Matlab/Simulink Toolboxes to support the simulation and understanding of the various kinematics systems and in particular how the SimMechanics toolbox is used to interface seamlessly with ordinary Simulink block diagrams to enable the mechanical elements and its associated control system elements to be investigated in one common environment. The result of simulation shows the mobile robot movement control based on decentralized point algorithm to follow the precision x and y references that has been specified. The design of the mobile robot is validated in simulation results as proof that this design can achieve the good performance.

2010 ◽  
Vol 7 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Shengju Sang ◽  
Zhao Jichao ◽  
Hao Wu ◽  
Shoujun Chen ◽  
Qi An

Spherical mobile robot (SMR) has been studied analytically and experimentally in this paper, a novel design with an internal propulsion mechanism and mathematical models of the robot's dynamics and kinematics are introduced. A 3D model of robot is built by SOLIDWORKS and then exported to ADAMS2007 for simulation. The results of simulation by combining MATLAB/SIMULINK with ADAMS are presented. It is shown experimentally that the behavior of actual model consist well with the prediction of simulation.


Author(s):  
Samir Bouzoualegh ◽  
El-Hadi Guechi ◽  
Ridha Kelaiaia

Abstract This paper presents a model predictive control (MPC) for a differential-drive mobile robot (DDMR) based on the dynamic model. The robot’s mathematical model is nonlinear, which is why an input–output linearization technique is used, and, based on the obtained linear model, an MPC was developed. The predictive control law gains were acquired by minimizing a quadratic criterion. In addition, to enable better tuning of the obtained predictive controller gains, torques and settling time graphs were used. To show the efficiency of the proposed approach, some simulation results are provided.


Author(s):  
S. Ramabalan ◽  
◽  
V. Sathiya ◽  
M. Chinnadurai ◽  
◽  
...  

This paper proposes two multi-objective trajectory planning optimization algorithms namely Multi-Objective Differential Evolution (MODE) and Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II). They are applied for a differential drive wheels mobile robot (WMR). A cubic NURBS curve is used to constitute the mobile robot’s path. The objective functions considered are travel time, traveled length, and actuators' efforts. All objective functions are to be minimized. The constraints considered are the mobile robot’s kinematic limits, obstacle avoidance, and dynamic limits. Two Stationary and five moving obstacles are present around the robot. Experimental and numerical simulation results are examined and compared.


2019 ◽  
Vol 15 (1) ◽  
pp. 47-52
Author(s):  
Ammar Aldair ◽  
Auday Al-Mayyahi

In maze maneuvering, it is needed for a mobile robot to feasibly plan the shortest path from its initial posture to the desired destination in a given environment. To achieve that, the mobile robot is combined with multiple distance sensors to assist the navigation while avoiding obstructing obstacles and following the shortest path toward the target. Additionally, a vision sensor is used to detect and track colored objects. A new algorithm is proposed based on different type of utilized sensors to aid the maneuvering of differential drive mobile robot in an unknown environment. In the proposed algorithm, the robot has the ability to traverse surrounding hindrances and seek for a particular object based on its color. Six infrared sensors are used to detect any located obstacles and one color detection sensor is used to locate the colored object. The Mobile Robotics Simulation Toolbox in Matlab is used to test the proposed algorithm. Three different scenarios are studied to prove the efficiency of the proposed algorithm. The simulation results demonstrate that the mobile robot has successfully accomplished the tracking and locating of a colored object without collision with hurdles.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Józef Lisowski

This paper describes and illustrates the optimization of a safe mobile robot control process in collision situations using the model of a multistep matrix game of many participants in the form of a dual linear programming problem. The synthesis of non-cooperative and cooperative game control software was performed in Matlab/Simulink software to determine the safe path of the robot when passing a greater number of other robots and obstacles. The operation of the game motion control algorithm of a mobile robot is illustrated by computer simulations made in the Matlab/Simulink program of two real previously recorded navigation situations while passing dozens of other autonomous mobile robots.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamad N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu A. Muhammad

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more accurate the model the better the response is when dealing with the real plant. This paper presents a model predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by system identification using a grey box technique. Simulation results show superior performance of the gains computed using the grey box model as compared to common linearized mathematical model. 


2014 ◽  
Vol 668-669 ◽  
pp. 352-356 ◽  
Author(s):  
Zhi Hu Ruan ◽  
Niu Wang ◽  
Bing Xin Ran

Based on kinematics characteristic of two-wheeled differential drive mobile robot (WMR) and response characteristic of fact motor drive system, this paper presents the analysis method of the equivalent rotation inertia, and the entire vehicle load is assigned to each wheel, and then the wheel load is converted into the corresponding equivalent rotation inertia of the motor shaft of each wheel, and motion model of WMR are obtained for combining with quasi-equivalent (QE) state space model of double-loop direct current motor systems under variable load and kinematics model of WMR under the load changes. By using speed response data of the actual system and combining with genetic algorithm to accurately identify the model parameters. Finally, through experiments results of the WMR motion model and the second order model respectively comparing with the actual system which demonstrates the effectiveness of the proposing method and model.


2013 ◽  
Vol 336-338 ◽  
pp. 734-737
Author(s):  
Hong Yu Zheng ◽  
Ya Ning Han ◽  
Chang Fu Zong

In order to solve the problem of road feel feedback of vehicle steer-by-wire (SBW) system based on joystick, a road feel control strategy was established to analyze the road feel theory of traditional steer system, which included return, assist and damp control module. By verifying the computer simulation results with the control strategy from software of CarSim and Matlab/Simulink, it shows that the proposed strategy can effective get road feel in different vehicle speed conditions and could improve the vehicle maneuverability to achieve desired steering feel by different drivers.


2013 ◽  
Vol 427-429 ◽  
pp. 133-136
Author(s):  
Qiang Song ◽  
Pu Zeng

The driving theory and the dynamic characteristics of small radius steering, medium radius steering and big radius steering is analyzed, and the simulation model is established under Matlab/Simulink. Then the track bulldozers steering performance of the three sheerings is simulated. The results show that, at different steering modes, the running states of the two sides driving motors are not the same, and the track driving forces of the two sides vary widely. The track driving force is great in the small radius steering model, while small in the medium and big radius steering models. The simulation results lay the foundation for dual-motor drive track bulldozers steering performance matching.


2021 ◽  
Author(s):  
Luigi Tagliavini ◽  
Andrea Botta ◽  
Luca Carbonari ◽  
Giuseppe Quaglia ◽  
Dario Gandini ◽  
...  

Abstract In this paper, a novel mobile platform for assistive robotics tasks is presented. The machine is designed for working in a home environment, un-structured and possibly occupied by people. To work in this space, the platform must be able to get rid of all the consequent difficulties: to overpass small objects as steps and carpets, to operate with an as-high-as-possible dynamics, to avoid moving obstacles, and to navigate autonomously to track persons for person monitoring purposes. The proposed platform is designed to have an omni-directional mobility that improves the manoeuvrability with respect to state-of-the-art differential drive robots. It also will have a non-axisymmetric shape to easily navigate narrow spaces, and real-time edge computing algorithms for navigation. This work shows the design paradigm adopted for the realization of a novel mobile robot, named Paquitop. For a robust output, the design process used a modular approach which disjointed the several sub-systems which compose the machine. After a brief analysis of the expected features, a set of basic requirements are drawn to guide the functional and executive design. The overall architecture of the platform is presented, together with some details on the mechanical and electrical systems.


Sign in / Sign up

Export Citation Format

Share Document