Reconfigurable Frequency Textile Antenna with Circular Polarization Using Slotted Technique

2015 ◽  
Vol 781 ◽  
pp. 81-84 ◽  
Author(s):  
Shakhirul Mat Salleh ◽  
Muzammil Jusoh ◽  
Abdul Hafiizh Ismail ◽  
Muhammad Ramlee Kamarudin ◽  
Mohamad Imran Ahmad ◽  
...  

This paper presents a reconfigurable frequency microstrip patch textile antenna using slotted technique. The switchable frequency is achieved by implementing three PIN diode switches at the slotted ground of the antenna. It is discovered that the switching element is capable to configure the frequency at six different states of operating frequencies between 1.575 GHz until 2.45 GHz. With certain switches configuration, the antenna is proficient to produce a dual-band frequency of band 1; 1.575 GHz and 2.45 GHz and band 2; 1.588 GHz and 2.36 GHz. Besides, the antenna has successfully perform an axial ratio of less than <3 dB at the GPS operating frequency of 1.575 GHz. A shieldit super is used for the antenna radiator and felt fabric as the antenna substrate. The design and simulated result shows that the presented antenna is potential to be implemented in GPS and Wi-Fi applications.

2017 ◽  
Vol 9 (8) ◽  
pp. 1695-1703
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a coplanar waveguide (CPW)-fed dual-band uniplanar tri-polarization reconfigurable antenna based on the PIN diode switch is proposed. The proposed antenna can be reconfigured between the linear polarization (LP) and the circular polarization (CP) mode, including both the right-handed circular polarization and left-handed circular polarization simultaneously within the dual operating bands. The central frequencies of the bands are 2.63 and 4.42 GHz, respectively, and the overlapped operating bandwidth is 17.8 and 3.40%. The proposed reconfigurable antenna is a closed-slot antenna fed by the CPW transmission line and the reconfigurable mechanism is to regulate the T-shaped driven stub through switching the PIN diodes on and off. The scattering parameters, axial ratio, radiation pattern, gain, and the radiation efficiency of the proposed antenna are all investigated in the following. The optimized antenna has been fabricated to experimental test, the simulated and the measured results agree well with each other. The lower frequency band of the proposed antenna covers the 2.40 GHz WLAN specification and the upper band can be used for the 5 G communication (4.40–4.50 GHz); therefore it is suitable to be applied in the mobile wireless communication.


2016 ◽  
Vol 9 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Dinesh Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Ganga Prasad Pandey ◽  
Sandeep Kumar

The design and measurement of reconfigurable circularly polarized capacitive fed microstrip antenna are presented. Small isosceles right angle triangular sections are removed from diagonally opposite corners for the generation of circular polarization (CP) of axial ratio bandwidth of 11.1%. Horizontal slits of different lengths are inserted at the edges of the truncated patch to provide the dual-band CP and by switching PIN diodes across the slits ON and OFF, reconfigurable circularly polarized antenna is realized. The antenna shows dual-band behavior with reconfigurable CP. In order to enhance the operation bandwidth of the antenna, an inclined slot was embedded on the patch along with PIN diodes across the horizontal slits. This proposed antenna gave an impedance bandwidth of 66.61% (ON state) ranging from 4.42 to 8.80 GHz and 68.42% (OFF state) ranging from 4.12 to 8.91 GHz and exhibits dual-frequency CP with PIN diode in OFF state and single-frequency CP with PIN diode in ON state with good axial ratio bandwidth. The axial ratio bandwidth of 4.42, 2.35, and 2.72% is obtained from the antenna. The antenna has a similar radiation pattern in all the three different CP bands and almost constant gain within the bands of CP operation.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kush Agarwal ◽  
Saugata Dutta

This paper proposes a compact microstrip patch antenna for operating in 2.4 GHz ISM and 3.5 GHz WiMAX bands with circularly polarized (CP) radiation. The CP radiation in dual-bands is a result of two multilayered truncated corner stacked square patches, while the reactive impedance surface (RIS) is used for antenna size miniaturization for the lower operating frequency band. Since the overall lateral antenna dimensions are controlled by the lower frequency band (higher wavelength), reducing the electrical size of the antenna for lower band results in overall smaller antenna dimensions. The measured 3-dB axial ratio bandwidths of the in-house fabricated antenna prototype are 6.1% (2.40–2.55 GHz) for the lower band and 5.7% (3.40–3.60 GHz) for the upper band, while the 10-dBS11bandwidths for the two bands are 8.1% (2.39–2.59 GHz) and 6.9% (3.38–3.62 GHz), respectively. The maximum gain at boresight for the lower band is 2.93 dBic at 2.5 GHz, while the gain for the upper band is 6.26 dBic at 3.52 GHz. The overall volume of the proposed antenna is 0.292λo × 0.292λo × 0.044λo, whereλois the corresponding free-space wavelength at 2.5 GHz.


2015 ◽  
Vol 8 (8) ◽  
pp. 1207-1213 ◽  
Author(s):  
Sachin Kumar ◽  
Binod K. Kanaujia ◽  
Mukesh K. Khandelwal ◽  
A.K. Gautam

A single-feed dual-band circularly polarized stacked microstrip patch antenna with a small-frequency ratio is presented. Two pair of orthogonal slits is cut on the lower circular patch for achieving circular polarization and truncated corner square patch is used as the upper parasitic element. The frequency ratio of the dual-band is 1.03. The 3 dB axial ratio bandwidth is 1.3% for the upper band and 1.1% for the lower band. Proposed structure is fabricated on the FR-4 epoxy substrate and fed by SMA connector. The measured results are in good agreement with the theoretical and simulated results. The antenna shows stable radiation characteristics in both bands of operation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joshua M. Patin ◽  
Satish K. Sharma

A novel single feed aperture-coupled wideband dielectric resonator antenna (DRA) exhibiting righ-handed circular polarization (RHCP) operating in the Ku-band frequency range is presented. The aperture-coupled single feed design utilizes back-side microstrip excitation through a novel bow-tie-shaped cross-slots in the ground plane. Extensive simulation parametric studies resulted in a 3 dB axial ratio (AR) bandwidth of 17.24% at a center frequency of 13 GHz, where the dielectric resonator is excited in its HEM11δresonant mode. A prototype DRA was fabricated with some limitations and experimentally verified for the impedance matching and radiation patterns showing circular polarization.


2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


Author(s):  
Syed Muhammad Ali

Design of antennas for the latest upcoming standards of WLANs is considered as a key challenge in the science of Mobile Communication Engineering. Micro strip antennas are supposed to have some quality features in mobile and wireless network systems. Their weight and size are reduced and they are capable of having low power capacity. All these interesting features enabled these type of antennas suitable for the communication of IEEE 802.11ax-2019 high speed WLANs. Shape of these antennas can be designed in an efficient manner to achieve required gain and bandwidth. In this paper the concept of circular polarization has been introduced along with compact design of antennas in order to achieve return loss and axial ratio of less than -10 dB and 3dB respectively. Antenna has been designed and simulated on CST MW studio software and usage of dual bands 2.4 and 5.2GHz having circular polarization is properly elucidated for 802.11ax-2019.


In this communication, a circular patch antenna is reported for dual- band operation based on VIAs. Initially the patch is resonating at single band with Linear Polarization (LP), and the Circular Polarization (CP) is obtained by inserting semi circular cuts at the edges of circular patch. The second band is achieved by loading the vertical metallic VIAs along the circumference of the patch antenna. The reported antenna is working at 2.4 GHz (Wi-Fi) and 3.5 GHz (5G) bands with Return Loss Band Width (RLBW) of 4.83% and 10.37% respectively. The Axial Ratio (AR) bandwidth at 5G band is 2.38% (3.31- 3.39 GHz)


Sign in / Sign up

Export Citation Format

Share Document