Improved Design of Three Phase Hybrid Excitation Flux Switching Motor with Segmental Rotor

2015 ◽  
Vol 785 ◽  
pp. 295-299
Author(s):  
Erwan Sulaiman ◽  
Hassan Ali ◽  
Mubin Aizat ◽  
Zhafir Aizat

This paper presents the new design of Hybrid Excitation Flux Switching Motor (HEFSM) using segmental rotor structure. HEFSMs are those that consist all the excitation flux sources at their stator with robust rotor structure. The rotor is designed as segmental due to the reason that segmental rotor has ability to yield the magnetic path for conveying the field flux to nearby stator armature coil with respect to the rotation of the rotor. This design gives the clear advantage of shorter end winding compared to the toothed rotor as there is no overlap winding between field excitation coil (FEC) and armature coil. In this paper the initial design of HEFSM with segmental rotor has been improved by changing segment span, FEC slot area and armature slot area until maximum torque and power of 33.633 Nm and 8.17 KW respectively have been achieved. Moreover coil test analysis, induced voltage, cogging torque, magnetic flux characteristics, torque vs. field current density and torque vs. power speed characteristics are examined on the basis of 2-D finite element analysis (FEA).

2015 ◽  
Vol 773-774 ◽  
pp. 776-780
Author(s):  
Hassan Ali Soomro ◽  
Erwan Sulaiman ◽  
Faisal Khan

Flux switching machines (FSMs), new type of electric machines with unique operating principles have been introduced and published recently. FSMs contain armature and excitation sources on the stator with robust rotor structure. According to rotor structure FSMs can be classified into two types namely salient pole rotor and segmental pole rotor. Various topologies have been studied and published using both rotor structures, however salient pole rotor has a demerit of less torque generation due to longer flux path resulting flux leakage surrounding the rotor. In this paper a new structure of hybrid excitation FSM (HEFSM) with segmental rotor is proposed and a comparative analysis with the invented field excitation FSM (FEFSM) and permanent magnet FSM (PMFSM) is presented. Initially, coil arrangement tests are examined to confirm the operating principle of HEFSM with segmental rotor. Moreover, the cogging torque, induced voltage, magnetic flux, torque at various armature current densities and power characteristics are observed based on 2D-finite element analysis (FEA).


2018 ◽  
Vol 7 (2.23) ◽  
pp. 157
Author(s):  
M F. Omar ◽  
E Sulaiman ◽  
H A. Soomro ◽  
G M. Romalan ◽  
S M. N. S. Othaman

Recently, a three-phase Field Excitation Flux Switching Motor (FEFSM) with salient rotor structure has been introduced with their advantages of easy rotor temperature elimination and controllable FEC magnetic flux particularly meet for high torque, high power as well as high speed diverse performances. Nevertheless, the salient rotor structure is found to lead a longer magnetic flux path between stator and rotor producing weak flux linkage along with low torque performances. Therefore, a new structure of a single-phase FEFSM using segmental rotor with non-overlap windings is proposed. Segmental rotor and non-overlap windings are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes less weight as well as more robust. Detailed analysis on winding arrangement test analysis, armature and FEC flux linkage, back-EMF and average torque characteristics have been performed by using 2D Finite Element Analysis (FEA) through JMAG version 15 software. The results show that the proposed motor with segmental rotor and non-overlap windings produce short flux path, high flux linkage and the highest torque capability achieved is 0.91 Nm.  


2014 ◽  
Vol 695 ◽  
pp. 778-782 ◽  
Author(s):  
Hassan Ali Soomro ◽  
Erwan Sulaiman ◽  
Mohd Fairoz Omar

This paper presents a new structure of hybrid excitation flux switching motor (HEFSM) using segmental rotor and the comparison of HEFSM and FEFSM using segmental rotor is performed to find the best candidate for hybrid electric vehicles (HEV). (HEFSM) using segmental rotor contains both the FEC and PM on the stator to produce maximum flux linkages. Initially, the coil arrangement tests are examined to validate the operating principle of the (HEFSM) using segmental rotor. Moreover the profile of flux linkage, cogging torque, and torque characteristics at various armature current densities of both the (HEFSM) and (FEFSM) using segmental rotor are observed based on 2D-finite element analysis (FEA). Initially performances show that HEFSM using segmental rotor produces torque of 18 Nm with low cogging torque and sinusoidal flux waveform. Thus by further design optimization the proposed motor will effectively achieve the target performances.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 479
Author(s):  
S. Khalidah Rahimi ◽  
Md. Zarafi Ahmad ◽  
Erwan Sulaiman ◽  
Syed M. Naufal Syed Othman ◽  
Hassan Ali Soomro

In this paper, design analysis of Hybrid- Excited Flux Switching Machine (H-EFSM) with 12Slot-8Pole (12S-8P) and 12Slot-14Pole (12S-14P) topologies are presented. H-EFSM  has  been introduced in which  the advantage  of  Permanent  Magnet  (PM)  machines  and  DC  Field Excitation Coil (FEC) synchronous machines is combined. H-EFSM  design proposed less permanent magnet consumption, high to torque/power density and high efficiency. In recent, most of H-EFSM having FEC arranged  in  theta  direction  that affect in flux production which cause less flux generation and machines performances.  Therefore, a design of 12S-8P and 12S-14P H-EFSM with FEC arranged in radial direction is proposed to prevent flux cancellation and produce high flux linkage. Performance analysis of 12S-8P and 12S-14 H-EFSM such as PM flux, induced voltage, cogging torque and flux distribution are investigated by 2-D Finite Element Analysis (2D-FEA). A design with 12S-14P configuration has achieved the higher torque and power with 220.15Nm and  92.45kW, respectively at maximum field and armature current density


Author(s):  
Siti Khalidah Rahimi ◽  
Zarafi Ahmad ◽  
Erwan Sulaiman ◽  
Enwelum Mbadiwe I ◽  
Syed Muhammad Naufal Syed Othman

This paper presents performance analysis of 12Slot with various rotor pole numbers Hybrid Excitation Flux Switching Machine (HEFSM) for Hybrid Electric Vehicles (HEVs) application. HEFSM has carried out by combining the advantage of Permanent Magnet (PM) machines and DC Field Excitation Coil (FEC) synchronous machines. Previously, most of HEFSM structure having FEC windings in theta direction that create a problem of flux cancellation that will affect the performances of the machine.  Thus, a design of 12Slot HEFSM with FEC wounded in radial direction is proposed to eliminate the flux cancellation effect.  At first, armature coil arrangement test at no-load condition is conducted to analyze PM flux. Furthermore, induced voltage and cogging torque at open circuit condition are investigated based on 2D finite element analysis (FEA). Finally, torque and power performances are also examined at maximum FEC and armature current densities. The outcomes demonstrate that 12S-14P configuration has the highest PM flux linkage, torque, power and less distortion of back-emf waveform which are required to be used as a motor in HEVs. The highest torque and power achieved are 220.15Nm and 92.45kW, respectively.


2014 ◽  
Vol 695 ◽  
pp. 601-604
Author(s):  
Zhafir Aizat Husin ◽  
Erwan Sulaiman ◽  
Faisal Khan ◽  
Mohamed Mubin Aizat Mazlan ◽  
Mohd Fairoz Omar

This paper presents a new structure of field excitation flux switching motor (FEFSM) as an alternative candidate of non-permanent magnet (PM) machine. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. Initially, the coil arrangement tests are examined to validate the operating principle of the motor and to identify the zero rotor position. Furthermore, the profile of flux linkage, induced voltage, cogging torque, torque and power characteristics are observed based on 2D finite element analysis (FEA). Initial performances show that 8S-12P FEFSM produce torque and power of 8.79Nm and 1.5kW, respectively with low cogging torque and sinusoidal flux waveform. Further design refinement and optimization will be conducted to improve the performances of the motor.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 459 ◽  
Author(s):  
M F. Omar ◽  
E Sulaiman ◽  
H A. Soomro ◽  
L I. Jusoh ◽  
F Amin

Field excitation flux switching machines (FEFSMs) in which their torque performance generated by interaction between armature and field excitation (FE) coils have been widely designed and developed for various applications. In this regard, FEFSM with salient rotor is considered the most suitable candidate for high speed applications because of their advantages of flux controllability, and robust due to single piece of rotor structure. However, the existing FEFSM with overlapped armature and FEC windings lead to increment of copper loss, motor size and material cost. In addition, the declination of torque and power densities due to high rotor weight needs to be improved. In this paper, performance comparisons of four FEFSM topologies particularly emphasis on non-overlap armature coil and FEC windings placed on the stator with segmental rotor are investigated. The performances, including flux linkage, back-emf, flux strengthening, flux line, flux distribution, cogging torque, torque and power of the proposed motor are analysed and compared using 2D finite element analysis (FEA) thru JMAG Designer version 15. As a result, segmental rotor has produced shorter flux paths, while non-overlapping windings has reduced the copper consumption. Finally, the best combination of stator slot-pole configurations is 12S-6P which provide high flux linkage, high torque and power of 0.0412 Wb, 0.77 Nm and 0.26 kW, respectively. 


2014 ◽  
Vol 695 ◽  
pp. 770-773
Author(s):  
Siti Nur Umira Zakaria ◽  
Erwan Sulaiman

Research on hybrid electric vehicle (HEV) which combined battery based electric motor and conventional internal combustion engine (ICE) have been intensively increased since the last decade due to their promising solution that can reduce global warming. Some examples of electric motors designed for HEV propulsion system at present are dc motor, induction motor (IM), interior permanent magnet synchronous motor (IPMSM) and switched reluctance motor (SRM). Although IPMSMs are considered to be one of the successful electric motor used in HEVs, several limitations such as distributed armature windings, un-control permanent magnet (PM) flux and higher rotor mechanical stress should be resolved. In this paper, design improvement of E-Core hybrid excitation flux switching motor (HEFSM) for hybrid electric vehicles (HEVs) applications are presented. With concentrated armature and field excitation coil (FEC) windings, variable flux capability and robust rotor structure, performances of initial and improved 6S-14PE-Core HEFSM are analyzed. The improved topology has achieved highest torque and power of 246.557Nm and 187.302 kW, respectively.


2014 ◽  
Vol 695 ◽  
pp. 761-764
Author(s):  
Mohamed Mubin Aizat Mazlan ◽  
Erwan Sulaiman ◽  
Md Zarafi Ahmad ◽  
Zhafir Aizat Husin ◽  
Hassan Ali Soomro

Nowadays, in-wheel motors applied in pure electric vehicles (EVs) propulsion systems have attracted great attention in advance research and development. In-wheel direct drive provides quick torque response, higher efficiency, weight reduction, and increased vehicle space. As one of alternative, a new design of outer-rotor hybrid excitation flux switching motor (ORHEFSM) for in-wheel drive EV is proposed. In this paper, the optimization design of single-phase 8S-8P outer rotor HEFSM is analysed. Open and close circuit of initial and final design is compared based on 2-D finite element analysis (FEA). The design optimization has been made on the initial design machine shows that there is great enhancement on torque and power.


Sign in / Sign up

Export Citation Format

Share Document