An Application of Grey Wolf Optimizer for Commodity Price Forecasting

2015 ◽  
Vol 785 ◽  
pp. 473-478
Author(s):  
Zuriani Mustaffa ◽  
Mohd Herwan Sulaiman ◽  
Yuhanis Yusof

Over the recent decades, there are many nature inspired optimization algorithms have been introduced. In this study, a newly algorithm namely Grey Wolf Optimizer (GWO) is employed for gasoline price forecasting. The performance of GWO is compared against the results produced by Artificial Bee Colony (ABC) algorithm and Differential Evolution (DE) algorithm. Measured based on Mean Absolute Percentage Error (MAPE) and prediction accuracy, the GWO is proven to produce significantly better results as compared to the identified algorithms.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4756
Author(s):  
Bilal Naji Alhasnawi ◽  
Basil H. Jasim ◽  
Zain-Aldeen S. A. Rahman ◽  
Pierluigi Siano

In residential energy management (REM), Time of Use (ToU) of devices scheduling based on user-defined preferences is an essential task performed by the home energy management controller. This paper devised a robust REM technique capable of monitoring and controlling residential loads within a smart home. In this paper, a new distributed multi-agent framework based on the cloud layer computing architecture is developed for real-time microgrid economic dispatch and monitoring. In this paper the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm-based Time of Use (ToU) pricing model is proposed to define the rates for shoulder-peak and on-peak hours. The results illustrate the effectiveness of the proposed the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm based ToU pricing scheme. A Raspberry Pi3 based model of a well-known test grid topology is modified to support real-time communication with open-source IoE platform Node-Red used for cloud computing. Two levels communication system connects microgrid system, implemented in Raspberry Pi3, to cloud server. The local communication level utilizes IP/TCP and MQTT is used as a protocol for global communication level. The results demonstrate and validate the effectiveness of the proposed technique, as well as the capability to track the changes of load with the interactions in real-time and the fast convergence rate.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yi Dong ◽  
Jianmin Liu ◽  
Yanbin Liu ◽  
Xinyong Qiao ◽  
Xiaoming Zhang ◽  
...  

In order to improve reliability and fatigue life of cylinder gaskets in heavy duty diesel engine, several methods and algorithms are applied to optimize operating factors of gaskets. Finite element method is utilized to figure out and analyze the temperature fields, thermal-mechanical coupling stress fields, and deformations of gasket. After determining the maximum values of three state parameters, the orthogonal experimental design method is adopted to analyze the influence rules of five operating factors on three state parameters of the gaskets and four factors which most significantly affect these state parameters are determined. Then, the method which uses operating factors to predict state parameters is established on the application of hybrid neuron network based on partial least squares regression and deep neural network. The comparison results between the predicted values and real values verified the accuracy of the hybrid neuron network method. Based on artificial bee colony algorithm, improvement is attached to the way three kinds of grey wolves locate preys in grey wolf algorithm and the way how using different hierarchy wolfs in grey wolf algorithm to determine three weight coefficients and the location of prey is put forward with. The method using artificial bee colony algorithm to optimize the grey wolf algorithm is called ABC and GWO. The proposed HNN and the ABC and GWO method are applied to work out operating factors values which correspond to optimal state parameters of gasket, and the gaskets are optimized according to the optimal values. It has been demonstrated by finite element analysis results that maximum temperature, maximum coupling stress, and the maximum deformation decrease to 6 K, 12.57 MPa, and 0.0925 mm compared to the original values, respectively, which proves the accuracy of the algorithm and the validity of the improvement.


Author(s):  
Dit Suthiwong ◽  
Maleerat Sodanil ◽  
Gerald Quirchmayr

Computation Intelligence has inspired many researchers to develop the capability of computers to learn and solve a complex task in real-world problems. In this work, we propose an Artificial Bee Colony (ABC) to deal with the Stock Selection problem. We apply a Sigmoid-based Discrete-Continuous model with ABC to select appropriate features for stock scoring. The empirical study tests the performance of ABC compared with Genetic Algorithm (GA) and Differential Evolution (DE) algorithm by using data from the Stock Exchange Thailand. The empirical results show that the novel model stock selection significantly outperforms in terms of both investment return, diversity and model robustness.


2020 ◽  
Vol 10 (18) ◽  
pp. 6343
Author(s):  
Yuanyuan Liu ◽  
Jiahui Sun ◽  
Haiye Yu ◽  
Yueyong Wang ◽  
Xiaokang Zhou

Aimed at solving the problems of poor stability and easily falling into the local optimal solution in the grey wolf optimizer (GWO) algorithm, an improved GWO algorithm based on the differential evolution (DE) algorithm and the OTSU algorithm is proposed (DE-OTSU-GWO). The multithreshold OTSU, Tsallis entropy, and DE algorithm are combined with the GWO algorithm. The multithreshold OTSU algorithm is used to calculate the fitness of the initial population. The population is updated using the GWO algorithm and the DE algorithm through the Tsallis entropy algorithm for crossover steps. Multithreshold OTSU calculates the fitness in the initial population and makes the initial stage basically stable. Tsallis entropy calculates the fitness quickly. The DE algorithm can solve the local optimal solution of GWO. The performance of the DE-OTSU-GWO algorithm was tested using a CEC2005 benchmark function (23 test functions). Compared with existing particle swarm optimizer (PSO) and GWO algorithms, the experimental results showed that the DE-OTSU-GWO algorithm is more stable and accurate in solving functions. In addition, compared with other algorithms, a convergence behavior analysis proved the high quality of the DE-OTSU-GWO algorithm. In the results of classical agricultural image recognition problems, compared with GWO, PSO, DE-GWO, and 2D-OTSU-FA, the DE-OTSU-GWO algorithm had accuracy in straw image recognition and is applicable to practical problems. The OTSU algorithm improves the accuracy of the overall algorithm while increasing the running time. After adding the DE algorithm, the time complexity will increase, but the solution time can be shortened. Compared with GWO, DE-GWO, PSO, and 2D-OTSU-FA, the DE-OTSU-GWO algorithm has better results in segmentation assessment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian’qiang He ◽  
Naian Liu ◽  
Mei’lin Han ◽  
Yao Chen

In order to ensure “a river of clear water is supplied to Beijing and Tianjin” and improve the water quality prediction accuracy of the Danjiang water source, while avoiding the local optimum and premature maturity of the artificial bee colony algorithm, an improved artificial bee colony algorithm (ABC algorithm) is proposed to optimize the Danjiang water quality prediction model of BP neural network is proposed. This method improves the local and global search capabilities of the ABC algorithm by adding adaptive local search factors and mutation factors, improves the performance of local search, and avoids local optimal conditions. The improved ABC algorithm is used to optimize the weights and thresholds of the BP neural network to establish a water quality grade prediction model. Taking the water quality monitoring data of Danjiang source (Shangzhou section) from 2015 to 2019 as the research object, it is compared with GA-BP, PSO-BP, ABC-BP, and BP models. The research results show that the improved ABC-BP algorithm has the highest prediction accuracy, faster convergence speed, stronger stability, and robustness.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3178
Author(s):  
Pu Lan ◽  
Kewen Xia ◽  
Yongke Pan ◽  
Shurui Fan

In this study, a model based on the improved grey wolf optimizer (GWO) for optimizing RVFL is proposed to enable the problem of poor accuracy of Oil layer prediction due to the randomness of the parameters present in the random vector function link (RVFL) model to be addressed. Firstly, GWO is improved based on the advantages of chaos theory and the marine predator algorithm (MPA) to overcome the problem of low convergence accuracy in the optimization process of the GWO optimization algorithm. The improved GWO algorithm was then used to optimize the input weights and implicit layer biases of the RVFL network model so that the problem of inaccurate and unstable classification of RVFL due to the randomness of the parameters was avoided. MPA-GWO was used for comparison with algorithms of the same type under a function of 15 standard tests. From the results, it was concluded that it outperformed the algorithms of its type in terms of search accuracy and search speed. At the same time, the MPA-GWO-RVFL model was applied to the field of Oil layer prediction. From the comparison tests, it is concluded that the prediction accuracy of the MPA-GWO-RVFL model is on average 2.9%, 3.04%, 2.27%, 8.74%, 1.47% and 10.41% better than that of the MPA-RVFL, GWO-RVFL, PSO-RVFL, WOA-RVFL, GWFOA-RVFL and RVFL algorithms, respectively, and its practical applications are significant.


2020 ◽  
Vol 19 (02) ◽  
pp. 561-600
Author(s):  
Selcuk Aslan

The digital age has added a new term to the literature of information and computer sciences called as the big data in recent years. Because of the individual properties of the newly introduced term, the definitions of the data-intensive problems including optimization problems have been substantially changed and investigations about the solving capabilities of the existing techniques and then developing their specialized variants for big data optimizations have become important research topic. Artificial Bee Colony (ABC) algorithm inspired by the clever foraging characteristics of the real honey bees is one of the most successful swarm intelligence-based metaheuristics. In this study, a new ABC algorithm-based technique that is named source-linked ABC (slinkABC) was proposed by considering the properties of the optimization problems related with the big data. The slinkABC algorithm was tested on the big data optimization problems presented at the Congress on Evolutionary Computation (CEC) 2015 Big Data Optimization Competition. The results obtained from the experimental studies were compared with the different variants of the ABC algorithm including gbest-guided ABC (GABC), ABC/best/1, ABC/best/2, crossover ABC (CABC), converge-onlookers ABC (COABC), quick ABC (qABC) and modified gbest-guided ABC (MGABC) algorithms. In addition to these, the results of the proposed ABC algorithm were also compared with the results of the Differential Evolution (DE) algorithm, Genetic algorithm (GA), Firefly algorithm (FA), Phase-Based Optimization (PBO) algorithm and Particle Swarm Optimization (PSO) algorithm-based approaches. From the experimental studies, it was understood that the ABC algorithm modified by considering the unique properties of the big data optimization problems as in the slinkABC produces better solutions for most of the tested instances compared to the mentioned optimization techniques.


Sign in / Sign up

Export Citation Format

Share Document