Effect of Aging in Acidic Condition on Mechanical Properties of Copper (II) Oxide Added LDPE Composites

2015 ◽  
Vol 786 ◽  
pp. 8-12
Author(s):  
Tiam Ting Tee ◽  
Soo Tueen Bee ◽  
Tin Sin Lee ◽  
Chantara Thevy Ratnam ◽  
Haraveen Kaur Jogindar Singh ◽  
...  

In this work, the effect of aging duration time and copper (II) oxide loading level on the physico-mechanical properties of copper (II) oxide added LDPE composites have been investigated. The addition of copper (II) oxide particles in LDPE matrix has significantly decreased the tensile strength of LDPE composites. The occurrence of copper (II) oxide particles in LDPE matrix could reduce the matrix continuities of copper (II) oxide added LDPE composites by the agglomeration of copper (II) oxide particles. This could further cause the applied straining stress unable to be effectively transferred throughout the whole polymer matrix. The increasing of aging time duration up to 8 days has slightly reduced the tensile strength of all copper (II) oxide added LDPE composites. The increasing of copper (II) oxide loading level has significantly decreased the elongation at break of LDPE composites. This is due to poor interfacial adhesion between copper (II) oxide particles and LDPE matrix could further restrict the mobility of LDPE chains under straining stress and thus decrease the elongation at break.

2011 ◽  
Vol 380 ◽  
pp. 290-293
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
De Gao

In situ melt copolycondensation was proposed to prepare biodegradable copolyester nanocomposites based on degradable components poly(L-lactic acid) (PLA), rigid segments poly(butylene terephthalate) (PBT), and nanoparticles polyhedral oligomeric silsesquioxanes (POSS). The morphologies and dispersions of two POSS nanoparticles (POSS-NH2 and POSS-PEG) in the copolyester PLABT matrix and their effects on the mechanical properties were investigated. The results demonstrated that the morphologies and dispersions of POSS-NH2 and POSS-PEG showed quite different characteristics. POSS-PEG took better dispersion in the PLABT, while POSS-NH2 had poor dispersions and formed crystalline microaggregates. Due to the good dispersion and strong interfacial adhesion of POSS-PEG with the matrix, the tensile strength and Young’s modulus were greatly improved from 6.4 and 9.6 MPa for neat PLABT up to 11.2 and 70.7 MPa for PLABT/POSS-PEG nanocomposite. Moreover, the incorporation of POSS-PEG could impart macromolecular chains good flexibility and improve the mobility of the chains, so the the elongation at break of PLABT/POSS-PEG nanocomposite dramatically increased from 190 to 350 % compared with neat PLABT.


2012 ◽  
Vol 501 ◽  
pp. 194-198 ◽  
Author(s):  
Mou'ad A. Tarawneh ◽  
Sahrim H. Ahmad ◽  
A.R. Shamsul Bahri ◽  
Yu Lih Jiun

This paper discusses the processing of a hybrid of TPNR-MWNTs-OMMT nanocomposites with different percentages of filler to determine the optimum mechanical properties of the hybrid nanocomposites. Three types of hybrid nanocomposites with various MWNTs-OMMT compositions (1%wt MWNTs+3%wt OMMT), (2%wt MWNTs+2%wt OMMT) and (3%wt MWNTs+1%wt OMMT) were prepared. The OMMT layers were found to be separated further with higher nanotubes content as exhibited by X-ray diffraction. The result of tensile test showed that tensile strength and Young's modulus increase in the presence of nanotubes and maximum value were obtained for the nanocomposites with highest nanotubes (3%wt) which increased about 33% and 36%, respectively compared with pure TPNR matrix. On other hand, the elongation at break considerably decreased with increasing the percentage of MWNTs. TEM micrographs revealed aspect ratio and fillers orientation in the TPNR matrix also promoted strongly to interfacial adhesion between fillers and the matrix which contributed significantly to the improvement of the mechanical properties


2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.


2013 ◽  
Vol 747-748 ◽  
pp. 507-512 ◽  
Author(s):  
Tong Liu ◽  
Hai Long Shen ◽  
Tong Wen Zhang ◽  
Mu Zhu ◽  
Cheng Gong Qin

The oxide-dispersion-strengthened (ODS) ferritic alloy powders (Fe-14Cr-3Al-2W-0.1Ti-0.35Y2O3) were prepared by mechanical alloying (MA) at a rotation speed of 720 rpm for 24 h. All the elements were mixed homogenously in the powder, and Cr and Al dissolved in α-Fe after MA. The bulk samples were produced by spark plasma sintering (SPS) at 950 and 50 MPa and by hot isostatic pressing (HIP) at 1150 and 130 MPa, respectively. The SPS sample showed a tensile strength of 730 MPa and a poor ductility due to the existence of pores in microsize. The HIP sample had a high tensile strength of 980 MPa, yield strength of 710 MPa and elongation of 10.3 %. The excellent mechanical properties of the HIP sample was due to the small grain size of the matrix of about 400 nm and the fine oxide particles of 5-40 nm.


2021 ◽  
Vol 877 ◽  
pp. 3-8
Author(s):  
Prathumrat Nuyang ◽  
Atiwat Wiriya-Amornchai ◽  
Watthanaphon Cheewawuttipong

The effect of compatibilizer agent was studied when adding Aluminum fine powder (Al) to reinforce in Polypropylene (PP) by compared between polymer matrix composites (PMCs) and PMCs added Polypropylene graft maleic anhydride (PP-g-MAH).The average particle size of the aluminum fine powder was around 75 μm filled in polypropylene with different proportions of 2.5, 5, 7.5 and 10wt%. PMCs were prepared using the internal mixer. The results found that when the amount of aluminum fine powder increased, the mechanical properties had changed, i.e., tensile strength, and Young’s Modulus increased, while the impact strength and elongation at break decreased. But, when adding compatibilizer 1wt% it was found that the trend of tensile strength, and Young’s Modulus increased that compared with non-compatibilizer, but the impact strength and elongation at break decreased. The part of the morphology of PMCs with non-compatibilizer was found that the particle of aluminum fine powder dispersed in the matrix phase, but there were many microvoids between filler and matrix. But, PMCs with compatibilizer caused the microvoids between filler and matrix to be reduced.


2011 ◽  
Vol 236-238 ◽  
pp. 2028-2031
Author(s):  
Bing Tao Wang ◽  
Yan Zhang ◽  
Zheng Ping Fang

Biodegradable aliphatic-aromatic copolyesters/POSS nanocomposites were synthesized via in situ melt copolycondensation of terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and polyhedral oligomeric silsesquioxanes (POSS) reagents (POSS-NH2 and POSS-PEG). The morphologies and dispersions of two POSS reagents in the nanocomposites and their effects on the mechanical and thermal properties were investigated. TEM and XRD characterizations confirmed that POSS-NH2 formed crystalline microaggregates and took poor dispersions in the nanocomposite, while POSS-PEG had better dispersion in the matrix. Due to the good dispersion and interfacial adhesion of POSS-PEG with the copolyester PBTL matrix, the tensile strength and the Young’s modulus greatly increased for PBTL/POSS-PEG nanocomposite. Moreover, compared with POSS-NH2 the existence of POSS-PEG imparted PBTL good flexibility and increased the mobility of the chains, so the glass-transition temperature and the heat of melting as well as the elongation at break were obviously influenced for PBTL/POSS-PEG nanocomposite.


1970 ◽  
Vol 45 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Husna P Nur ◽  
M Akram Hossain ◽  
Shahin Sultana ◽  
M Mamun Mollah

Use of natural fiber as reinforcing material is the latest invention of polymer science in order to get higher strength with lower weight composite materials having several applications. In this present investigation banana fiber, a natural fiber, is used as the reinforcing material. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using both untreated and bleached (treated) banana fiber and LDPE with 7.5, 15, 22.5 and 30% weight content of fibers by using compression molding technique. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of different types of prepared composites were characterized. From this study it is observed that all these values have augmented up to a definite percentage. The tensile strengths and flexural strengths of the composites increased up to 22.5% fiber addition then started to decrease gradually. Young moduli of the composites increased with the increase of fiber addition. Water absorption also increased with the weight of the fiber. Whereas elongation at break decreased with increasing fiber loading. Mechanical properties of bleached banana fiber-LDPE composites were slightly higher than the untreated banana fiber-LDPE composites. Compared to virgin molded LDPE both tensile and flexural strengths and Young moduli of these LDPE-banana fiber composites were significantly higher. All the variable properties like tensile strength, flexural strength, and water absorption capacity showed a very significant role in these polymer composites. Keywords: Banana fiber; LDPE; Composite; Tensile strength; Flexural strength DOI: 10.3329/bjsir.v45i2.5708Bangladesh J. Sci. Ind. Res. 45(2), 117-122, 2010


2013 ◽  
Vol 750-752 ◽  
pp. 858-862
Author(s):  
Cheng You Ma ◽  
Yan Mei Ma ◽  
Zhi He ◽  
Chen Yan ◽  
Dong Jiang

Double block copolymers of polyethersulfone (PES)/polycarbonate (PC) were used as a compatibilizer for a blend of PES/PC. The morphology, thermal properties, mechanical properties, etc. of the resulting ternary blend systems were investigated. The addition of the compatibizer improved the compatibility between PES and PC. It was found that the interfacial adhesion was enhanced; the size of the dispersed phase was reduced. This resulted in an improvement of elongation at break and tenacity of PES/PC blends, while the tensile modulus slightly increased, and tensile strength was almost constant.


Author(s):  
Abdarazag Hassan ◽  
J. G. Alotaibi ◽  
A. Shalwan ◽  
B. F. Yousif

This chapter addresses the proposal of fragmentation test and its simulation using ANSYS software owing to understand the interfacial adhesion of natural fibre with synthetic matrix. Date palm fibres and epoxy materials are selected for the study. The influence of NaOH concentration and fibre diameter on the interfacial adhesion of the fibre with the epoxy are studied. The results indicated that the addition of the fibre to the matrix significantly improved the mechanical properties of the composites. However, an optimum value for the chemical concentration and the fibre diameters should be considered in developing such materials. High NaOH concentration deteriorates the tensile strength of the fibre. Meanwhile, low NaOH concentration exhibits poor interfacial adhesion.


2019 ◽  
Vol 801 ◽  
pp. 121-126
Author(s):  
Rapeeporn Srisuk ◽  
Laongdaw Techawinyutham ◽  
Wantana Koetniyom ◽  
Rapeephun Dangtungee

The influence of bamboo charcoal (BC) in Poly (lactic) acid (PLA) matrix as masterbatch was studied on mechanical 40:60, 50:50 and 60:40 of masterbatch. BC MBs were diluted at 1 phr, 3 phr, and 5 phr. BC showed even distribution in PLA matrix; however,, it decreased compatibility in the matrix. The infusion of BC in PLA matrix enhanced the tensile modulus; however, there was a reduction in the tensile strength and the elongation at break. It could also be ascertained that there is no signification difference in the hardness of BC/PLA composites compared with neat PLA. The addition of BC slightly decreased shear viscosity of the composites. The optimal BC content in the composites was found to be 2.82wt.% (5 phr 60:40).


Sign in / Sign up

Export Citation Format

Share Document