scholarly journals Preparation of Polymer Composites using Natural Fiber and their Physico-Mechanical Properties

1970 ◽  
Vol 45 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Husna P Nur ◽  
M Akram Hossain ◽  
Shahin Sultana ◽  
M Mamun Mollah

Use of natural fiber as reinforcing material is the latest invention of polymer science in order to get higher strength with lower weight composite materials having several applications. In this present investigation banana fiber, a natural fiber, is used as the reinforcing material. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using both untreated and bleached (treated) banana fiber and LDPE with 7.5, 15, 22.5 and 30% weight content of fibers by using compression molding technique. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of different types of prepared composites were characterized. From this study it is observed that all these values have augmented up to a definite percentage. The tensile strengths and flexural strengths of the composites increased up to 22.5% fiber addition then started to decrease gradually. Young moduli of the composites increased with the increase of fiber addition. Water absorption also increased with the weight of the fiber. Whereas elongation at break decreased with increasing fiber loading. Mechanical properties of bleached banana fiber-LDPE composites were slightly higher than the untreated banana fiber-LDPE composites. Compared to virgin molded LDPE both tensile and flexural strengths and Young moduli of these LDPE-banana fiber composites were significantly higher. All the variable properties like tensile strength, flexural strength, and water absorption capacity showed a very significant role in these polymer composites. Keywords: Banana fiber; LDPE; Composite; Tensile strength; Flexural strength DOI: 10.3329/bjsir.v45i2.5708Bangladesh J. Sci. Ind. Res. 45(2), 117-122, 2010

2015 ◽  
Vol 650 ◽  
pp. 131-138 ◽  
Author(s):  
Himadri Das ◽  
Pallav Saikia ◽  
Dipul Kalita

Utilization of natural fiber as reinforcing material is the latest trend in polymer science to produce higher strength with lower weight composite materials having wide range of applications. As a natural fiber, banana fiber is getting importance in recent years in the reinforcement arena of polymer composite. Two species of banana vizMusa sapientumandMusa paradisicaavailable in North East India were selected considering their higher fiber yield and adequate strength properties of the fibers. The chemical compositions, spectroscopic and thermal properties of these fibers were studied in order to study their suitability for commercial exploration. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using hydraulic hot press. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of the prepared composites were determined. The tensile strengths and flexural strengths of the composites increased while using LDPE 10 to 30 % of the fiber and then started to decrease gradually. Young moduli of the composites increased with the increase of fiber mass. Water absorption also increased accordingly with the increase of the fiber weight. The elongation at break decreased with increasing fiber quantity. The mechanical strength properties of chemically treated banana fiber-LDPE composites were slightly higher than the mechanically extracted fiber-LDPE composites. Structural analyses of the treated fibers were carried out by FTIR and XRD. These studied revealed due to the removal of noncellulosic constituents such as hemicelluloses and lignin the crystalline properties of the fibers were increased. All the properties of composite like tensile strength, flexural strength, water absorption capacity etc. plays a significant role in these polymer composite materials. Hence it can be concluded that banana fiber can be used as reinforced agent successfully in the composite industry as a sustainable building material.


2013 ◽  
Vol 592-593 ◽  
pp. 647-650 ◽  
Author(s):  
Małgorzata Lenart

Cement – polymer composites are nowadays widely used in repair systems not only in case of concrete or reinforced concrete constructions but also in masonry. Polymers addition for example already at 5% m.c. modifies the structure of the cement – polymer composite in a way that many of the mechanical properties such as flexural strength, tensile strength or adhesion to substrates are improved. The paper presents the results of tests such as flexural, compressive or adhesion strength to ceramic substrate of hardened cement mortars with different composition, as well as selected cement mortars modified by two polymers: polyvinyl alcohol and styrene – butadiene polymer dosed at 5 % m.c. Four types of cement mortars modified by lime (component used in historical constructions as well as in contemporary masonry mortars) are also examined for comparison.


2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


Author(s):  
Mohd Shahneel Saharudin ◽  
Rasheed Atif ◽  
Fawad Inam

The influence of short term water absorption on the mechanical properties of halloysite nanotubes-multi layer graphene reinforced polyester hybrid nanocomposites has been investigated. The addition of nano-fillers significantly increased the flexural strength; tensile strength and impact strength in dry and wet conditions. After short term water exposure; the maximum microhardness; tensile; flexural and impact toughness values were observed at 0.1 wt% MLG. The microhardness increased up to 50.3%; tensile strength increased up to 40% and flexural strength increased up to 44%. Compared to dry samples; the fracture toughness and surface roughness of all types of produced nanocomposites were increased that may be attributed to plasticization effect. Scanning electron microscopy revealed that the main failure mechanism is caused by the weakening of nano-filler-matrix interface induced by water absorption. It was further observed that synergistic effects were not effective at concentration of 0.1 wt% to produce considerable improvement in mechanical properties of produced hybrid nanocomposites.


2011 ◽  
Vol 378-379 ◽  
pp. 735-739
Author(s):  
Yue Wen Li ◽  
Xin Hua Chen

Reactive compatibilization between high-density polyethylene(HDPE) and wood-flour was achieved via direct reactive extrusion of glycidyl methacrylate(GMA), initiator, HDPE and wood-flour. Impact rupture surface of the composite was observed by scanning electron microscope(SEM), and its load deformation temperature(HDT) and mechanical properties were tested. Effect of GMA dosage and extrusion temperature on reactive compatibilization of the composite was analysed. The result indicated that the anchoring strength of interface in the composite was obviously strengthened, and its HDT, tensile strength, flexural strength, notched impact strength and elongation at break of the composite were distinctly improved due to the addition of GMA and dicumyl peroxide(DCP). When the composite was extruded at 180°C, the peak values of its HDT, tensile strength, flexural strength, elongation at break and notched impact strength respectively were 84°C, 40Mpa, 45Mpa, 11% and 6.6KJ.m-2, which respectively increased by 17°C, 74%, 36%, 83% and 69% than that of the composite without reactive compatibilization, and when the composite was extruded at 190°C, the peak values of its HDT, tensile strength, flexural strength, elongation at break and notched impact strength respectively were 84°C, 40Mpa, 44Mpa, 11% and 6.6KJ.m-2, which respectively increased by 20°C, 60%, 26%, 83% and 83% than that of the composite without reactive compatibilization. When GMA usage increased, the HDT and mechanical properties of the composite increased first, then descended, and the optimum usage of GMA was 1wt%-3wt%.


2013 ◽  
Vol 830 ◽  
pp. 172-175
Author(s):  
Cheng Zhi Chuai ◽  
Zhi Zhang

Ethylene glycol (EG) and polyethylene glycol (PEG) were added as plasticizers to improve the processing performance of cellulose acetate (CA). The CA with 30% plasticizers were melted by HAAKE at 200 °C. The effects of EG and PEG (degree of polymerization in 200-800) on rheological properties and mechanical properties of CA were investigated. The results show that the plasticizing time, equilibrium torque and melt viscosity of the plasticizing system increase with the increase of PEG molecular weight, while the processing performance decreased. The tensile strength of the system decrease as the PEG molecular weight increased. The plasticizing system which contents 30% PEG-200(degree of polymerization is 200) shows the maximum elongation at break. The minimum values appeared in both flexural strength and flexural modulus in the CA/PEG-200 system.


2021 ◽  
Vol 912 (1) ◽  
pp. 012091
Author(s):  
I Risnasari ◽  
A Nuryawan ◽  
Delvian ◽  
Y S K Sekali

Abstract One alternative to overcome the weakness of polybags, namely creating plastic waste, is the use of biodegradable polybags (biopolybags) that are easily degraded so that they can be planted directly without having to be opened and disposed of. Therefore, the purpose of this study was to determine the effect of comparison between tapioca starch and sawdust pulp on mechanical properties, plant height and diameter growth, and soil chemical properties. The analysis used in this research is a tensile test using ASTM D638 2005 standard, elongation (elongation at break), elasticity (young’s modulus), and water absorption using SNI. The comparison of tapioca starch and sawdust pulp had a significant effect on the mechanical properties of the tensile strength and elongation tests, and had no significant effect on the elasticity.


2022 ◽  
Vol 58 (4) ◽  
pp. 28-36
Author(s):  
Velmurugan Natarajan ◽  
Ravi Samraj ◽  
Jayabalakrishnan Duraivelu ◽  
Prabhu Paulraj

This study aims to reveal the consequence of thickness reinforcement on Fiber Laminates (Polyester Resin, Glass Fiber, Aluminum, and Bentonite) and to see if it can enhance the mechanical properties and resistance of laminates. Glass fiber reinforced polymer composites have recently been used in automotive, aerospace, and structural applications where they will be safe for the application s unique shape. Hand layup was used to fabricate three different combinations, including Aluminium /Glass fiber reinforced polyester composites (A/GFRP), Bentonite/Glass fiber reinforced polyester composites (B/GFRP), and Aluminium&Bentonie/Glass fiber reinforced polyester composites (AB/GFRP). Results revealed that AB/GFRP had better tensile strength, flexural strength, and hardness than GFRP and A/GFRP. Under normal atmospheric conditions and after exposure to boiling water, hybrid Aluminium&Bentonite and glass fiber-reinforced nanocomposites have improved mechanical properties than other hybrid composites. After exposure to temperature, the flexural strength, tensile strength and stiffness of AB/GFRP Composites are 40 % higher than A/GFRP and 17.44% higher than B/GFRP Composites.


2018 ◽  
Vol 153 ◽  
pp. 01006 ◽  
Author(s):  
Suhas Yeshwant Nayak ◽  
Srinivas Shenoy Heckadka ◽  
Nishank Minil Amin ◽  
Ramakrishna Vikas Sadanand ◽  
Linto George Thomas

Hybridization of synthetic and natural fibres as reinforcement makes the polymer composites environmental friendly and sustainable when compared to synthetic fibres based polymer composites. In this study chopped strand mat/pineapple leaf fibres were hybridized. Four laminates with six layers each, with different stack sequence (GGGGGG, GPPPPG, PGGGGP and PPPPPP) were fabricated using hand layup technique while maintaining a fibre to matrix ratio of 30:70 by weight with polyester resin as matrix. Mechanical properties such as tensile and flexural strength were determined and morphology of fractured specimens was studied. Maximum tensile strength of 180 MPa was obtained for the laminate with six layers of chopped strand mat followed by hybrid laminate with four layers of chopped strand mat at the centre (120 MPa). Tensile strength of hybrid laminate with four layers of pineapple leaf fibres at the centre was in third position at 86 MPa. Least tensile strength of 65 MPa was obtained for the laminate with six layers of pineapple leaf fibres. Similar trend was observed in case of flexural behaviour of the laminates with maximum flexural strength of 255 MPa and minimum flexural strength 107 MPa. Scanning electron microscopy of the fractured specimen reinforced with chopped strand mat only, indicated, fibre pull out, matrix cracking and lack of matrix adhesion to fibres. In case of hybrid composite (GPPPPG and PGGGGP) delamination was observed to be prominent due to improper wetting of the pineapple leaf fibres with the matrix. More significant delamination led to lesser strength in case of pineapple fibres reinforced composites even though the fibre pull out was relatively less.


2015 ◽  
Vol 786 ◽  
pp. 8-12
Author(s):  
Tiam Ting Tee ◽  
Soo Tueen Bee ◽  
Tin Sin Lee ◽  
Chantara Thevy Ratnam ◽  
Haraveen Kaur Jogindar Singh ◽  
...  

In this work, the effect of aging duration time and copper (II) oxide loading level on the physico-mechanical properties of copper (II) oxide added LDPE composites have been investigated. The addition of copper (II) oxide particles in LDPE matrix has significantly decreased the tensile strength of LDPE composites. The occurrence of copper (II) oxide particles in LDPE matrix could reduce the matrix continuities of copper (II) oxide added LDPE composites by the agglomeration of copper (II) oxide particles. This could further cause the applied straining stress unable to be effectively transferred throughout the whole polymer matrix. The increasing of aging time duration up to 8 days has slightly reduced the tensile strength of all copper (II) oxide added LDPE composites. The increasing of copper (II) oxide loading level has significantly decreased the elongation at break of LDPE composites. This is due to poor interfacial adhesion between copper (II) oxide particles and LDPE matrix could further restrict the mobility of LDPE chains under straining stress and thus decrease the elongation at break.


Sign in / Sign up

Export Citation Format

Share Document