Influence on Surface Quality in Milling of Green Stage Zirconia for Dental Products

2015 ◽  
Vol 794 ◽  
pp. 201-206
Author(s):  
Vitali Dejkun ◽  
Sören Dietz ◽  
Eberhard Abele

The following article gives an overview on the manufacturing challenges of milling green stage zirconia. Significant influence factors on the surface quality like machine type, cutting parameters, milling strategy and post processing were investigated. The results show a minimal influence of the machine type. Furthermore machining zirconia with high cutting speed and low cutting depth best for surface quality. Tool wear and milling strategies have major influences on surface roughness and chipping. The combination milling strategy leads to material cracks and has negative impacts on the surface quality. Post processes like polishing and sintering improves surface roughness by 50 % after the milling.

2013 ◽  
Vol 773-774 ◽  
pp. 339-347 ◽  
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

With increasing quantities of applications of Metal Matrix Composites (MMCs), the machinablity of these materials has become important for investigation. This paper presents an investigation of surface roughness and tool wear in dry machining of aluminium LM6-TiC composite using uncoated carbide tool. The experiments carried out consisted of different cutting models based on combination of cutting speed, feed rate and depth of cut as the parameters of cutting process. The cutting models designed based on the Design of Experiment Response Surface Methodology. The objective of this research is finding the optimum cutting parameters based on workpiece surface roughness and cutting tool wear. The results indicated that the optimum workpiece surface roughness was found at high cutting speed of 250 m min-1 with various feed rate within range of 0.05 to 0.2 mm rev-1, and depth of cut within range of 0.5 to 1.5 mm. Turning operation at high cutting speed of 250 m min-1 produced faster tool wear as compared to low cutting speed of 175 m min-1 and 100 m min-1. The wear minimum (VB = 42 μm ) was found at cutting speed of 100 m min-1, feet rate of 0.2 mm rev-1, and depth of cut of 1.0 mm until the length of cut reached 4050 mm. Based on the results of the workpiece surface roughness and the tool flank wear, recommended that turning of LM6 aluminium with 2 wt % TiC composite using uncoated carbide tool should be carried out at cutting speed higher than 175 m min-1 but at feed rate of less than 0.05 mm rev-1 and depth of cut less than 1.0 mm.


2010 ◽  
Vol 33 ◽  
pp. 487-491 ◽  
Author(s):  
Xiao Lei Guo ◽  
Hui Nan Liu ◽  
Wei Gao ◽  
Ping Xiang Cao ◽  
Yong Guo

Wood plastic composites (WPCs) are the industrial products. It is made out of wood waste fibre and waste plastic glued together by heat and pressure. Nowadays WPCs products are preferred over solid wood in many applications due to certain comparative advantages. Sawing is the machining operation frequently used in manufacturing parts of WPCs. The aim of this article is to study the effect of cutting speed on surface roughness in different WPCs sawing. A plan of WPCs sawing experiments was preformed with prefixed cutting parameters. The objective was to establish correlation between rice hull flour/PE composite, rice hull flour/PP, rice hull flour/PVC and cutting speed with the surface roughness after sawing. The results show that the spindle speed had significant effects on the surface qualities of rice hull flour/PE composites, rice hull flour/PVC composites and rice hull flour/PP composites. The advantage of using a high cutting speed in WPCs sawing is evident. With appropriate cutting parameters, one can obtain surfaces with Ra<6μm and to get surfaces qualities (dimensional precision) in workpiece of different WPCs.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gökhan Sur ◽  
Ömer Erkan

Purpose Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the drill geometry and cutting parameters to improve the surface quality of CFRP composite material. In this study, CFRP plates were drilled with uncoated carbide drill bits with standard and step geometry. Thus, the effects of standard and step drill bits on surface quality have been examined comparatively. In addition, optimum output parameters were determined by Taguchi, ANOVA and multiple decision-making methods. Design/methodology/approach Drill bit point angles were selected as 90°, 110° and 130°. In cutting parameters, three different cutting speeds (25, 50 and 75 m/min) and three different feeds (0.1, 0.15 and 0.2 mm/rev) were determined. L18 orthogonal sequence was used with Taguchi experimental design. Three important output parameters affecting the surface quality are determined as thrust force, surface roughness and delamination factor. For each output parameter, the effects of drill geometry and cutting parameters were evaluated. Input parameters affecting output parameters were analyzed using the ANOVA method. Output parameters were estimated by creating regression equations. Weights were determined using the analytic hierarchy process (AHP) method, and multiple output parameters were optimized using technique for order preference by Similarity to An ideal solution (TOPSIS). Findings It has been determined from the experimental results that step drills generate smaller thrust forces than standard drills. However, it has been determined that it creates greater surface roughness and delamination factor. From the Taguchi analysis, the optimum input parameters for Fz step tool geometry, 90° point angle, 75 m/min cutting speed and 0.1 mm/rev feed. For Fd, are standard tool geometry, 90° point angle, 25 m/min cutting speed and 0.1 mm/rev feed and for Ra, are standard tool geometry, 130° point angle, 25 m/min cutting speed and 0.1 mm/rev feed. ANOVA analysis determined that the most important parameter on Fd is the tip angle, with 56.33%. The most important parameter on Ra and Fz was found to be 40.53% and 77.06% tool geometry, respectively. As a result of the optimization with multiple criteria decision-making methods, the test order that gave the best surface quality was found as 4–1-9–5-8–17-2–13-6–16-18–15-11–10-3–12-14. The results of the test number 4, which gives the best surface quality, namely, the thrust force is 91.86 N, the surface roughness is 0.75 µm and the delamination factor is 1.043. As a result of experiment number 14, which gave the worst surface quality, the thrust force was 149.88 N, the surface roughness was 3.03 µm and the delamination factor was 1.163. Practical implications Surface quality is an essential parameter in the drilling of CFRP plates. Cutting tool geometry comes first among the parameters affecting this. Therefore, different cutting tool geometries are preferred. A comparison of these cutting tools is discussed in detail. On the other hand, thrust force, delamination factor and surface roughness, which are the output parameters that determine the surface quality, have been optimized using the TOPSIS and AHP method. In this way, this situation, which seems complicated, is presented in a plain and understandable form. Originality/value In the experiments, cutting tools with different geometries are included. Comparatively, its effects on surface quality were examined. The hole damage mechanism affecting the surface quality is discussed in detail. The results were optimized by evaluating Taguchi, ANOVA, TOPSIS and AHP methods together.


2011 ◽  
Vol 383-390 ◽  
pp. 7133-7137 ◽  
Author(s):  
Komson Jirapattarasilp ◽  
Sittichai Kaewkuekool ◽  
Worapong Phongphatrawut

The aim of this research was to study factors, which was influenced on surface roughness in vertical milling of hardened medium carbon steel. The specimen was medium carbon steel grade JIS S50C that was hardened at 56± 2 HRC. Full factorial experimental design was conducted by 3 factors and 3 levels (33 design) with 2 replications. Studied factors were consisted of cutting speed, feed rate, and air coolant pressure. The results revealed that influenced factor affected to surface roughness was cutting speed and feed rate which showed significantly different. Higher cutting speed would cause on better surface quality. On the other hand, poorer surface quality was produced by higher feed rate. However, factors interaction were found between cutting speed with air coolant pressure and feed rate with air coolant pressure that significantly influenced to surface roughness. The interaction of high cutting speed with high air coolant pressure would be better quality of surface finish and lower feed rate with high air coolant pressure would be better surface quality.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


2015 ◽  
Vol 808 ◽  
pp. 15-20
Author(s):  
Adrian Trif ◽  
Marian Borzan ◽  
Alexandru Popan ◽  
Domniţa Fraţilă ◽  
Adriana Rus ◽  
...  

The main purpose of this paper is to analyze the influence of cutting regime parameters in case of dry turning of an aluminum alloy. For turning process of the aluminum alloy was used Sandvik insert DCGX 11 T3 08 Al H10. The influence of the main cutting parameters on the surface quality was analyzed using a statistical method (ANOVA) used to test differences between two or more means. Based on a mathematical model can be calculated the surface roughness taking into account the cutting speed, the feed rate and the depth of cutting.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 51
Author(s):  
Sobron Y. Lubis ◽  
Rosehan Rosehan ◽  
Musa Law

During face milling machining, several machining parameters such as feed rate and cuttingspeed determine the surface quality of the workpiece produced by the process. The selection of the rightparameters will lead to the surface quality as planned. Therefore, to improve machining effectiveness, amethod is needed to determine the appropriate machining parameters to produce the desired surfacequality. This research was conducted using a milling machine, five variations of cutting speed and fivevariations of feed rate were used to cut the workpiece aluminum alloy 7075. After machining, the surfaceroughness was measured using a surface test. The surface roughness value is then substituted into thefeed rate equation and effective cutting speed. By finding effective cutting parameters, the machiningprocess will be more efficient and effective without using unnecessary resources. From the results of thestudy note that the development equation to determine the feed rate based on the value of surfaceroughness is ???? = 0,6????√???? ????????0.443mm/tooth. Development equation to determine the effective cutting speedbased on Surface roughness value is ???????? = 3.0686????????0.124 mm/min


2011 ◽  
Vol 464 ◽  
pp. 496-500
Author(s):  
Xiao Hong Xue ◽  
Xu Hong Guo ◽  
Ting Ting Chen ◽  
Dong Dong Wan ◽  
Qiao Wang

Three cutting tools of different materials (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) are used for dry turning of 9 groups of ADI which heat-treated under different quenching time and quenching temperature. The surface roughness of ADI workpieces were tested after the finish turning at changed cutting parameters, and the influencing factors of surface quality were analysed. Results showed that the surface roughness values of all 9 groups of ADI workpieces obtained by CC6050 were the lowest and the surface quality was better at lower depth of cut ap and feed rate f with higher cutting speed vc . Meanwhile, the surface roughness was influenced by the isothermal quenching parameters of ADI workpieces significantly.


2013 ◽  
Vol 773-774 ◽  
pp. 894-901
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

Majority of the components of aerospace and automotive vehicles need different machining operations, mainly for the assembly requirements. The components have to present both high dimensional precision and surface quality. This present work is concerned with the effect of cutting parameters (cutting speed, feed rate and depth of cut) on the surface roughness and the chip formation in turning process. The machining results are compared with LM6 aluminium alloy and TiC reinforced metal matrix composite under the same cutting conditions and tool geometry. The cutting condition models designed based on the Design of Experiments Response Surface Methodology. The objective of this research is to obtaining the optimum cutting parameters to get a better surface quality and also the chip formation and furthermore does not hazardous to the worker and the machined products quality. Results shows that Surface roughness values of LM6-TiC composite are higher as compared LM6 alloy at similar cutting condition. With increasing in cutting speed improves the surface quality. The surface quality increases with decrease of the feed rate and the depth of cut. There are difference chip forms for LM6 aluminium alloy and Al-TiC composite for a similar of cutting condition. Generally, chip formations of both materials are acceptable and favourable for the worker as well as the products and the tools.


Sign in / Sign up

Export Citation Format

Share Document