scholarly journals PENENTUAN KECEPATAN PEMOTONGAN EFEKTIF BERDASARKAN NILAI KEKASARAN PERMUKAAN MATERIAL AA-7075 PADA PROSES FACE MILLING

POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 51
Author(s):  
Sobron Y. Lubis ◽  
Rosehan Rosehan ◽  
Musa Law

During face milling machining, several machining parameters such as feed rate and cuttingspeed determine the surface quality of the workpiece produced by the process. The selection of the rightparameters will lead to the surface quality as planned. Therefore, to improve machining effectiveness, amethod is needed to determine the appropriate machining parameters to produce the desired surfacequality. This research was conducted using a milling machine, five variations of cutting speed and fivevariations of feed rate were used to cut the workpiece aluminum alloy 7075. After machining, the surfaceroughness was measured using a surface test. The surface roughness value is then substituted into thefeed rate equation and effective cutting speed. By finding effective cutting parameters, the machiningprocess will be more efficient and effective without using unnecessary resources. From the results of thestudy note that the development equation to determine the feed rate based on the value of surfaceroughness is ???? = 0,6????√???? ????????0.443mm/tooth. Development equation to determine the effective cutting speedbased on Surface roughness value is ???????? = 3.0686????????0.124 mm/min

Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


2015 ◽  
Vol 808 ◽  
pp. 15-20
Author(s):  
Adrian Trif ◽  
Marian Borzan ◽  
Alexandru Popan ◽  
Domniţa Fraţilă ◽  
Adriana Rus ◽  
...  

The main purpose of this paper is to analyze the influence of cutting regime parameters in case of dry turning of an aluminum alloy. For turning process of the aluminum alloy was used Sandvik insert DCGX 11 T3 08 Al H10. The influence of the main cutting parameters on the surface quality was analyzed using a statistical method (ANOVA) used to test differences between two or more means. Based on a mathematical model can be calculated the surface roughness taking into account the cutting speed, the feed rate and the depth of cutting.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


2018 ◽  
Vol 18 (2) ◽  
pp. 98-106
Author(s):  
Marian BARTOSZUK ◽  
Munish Kumar GUPTA

The optimization of surface roughness values considered as one of the most significant issues regarding turning process of titanium alloys with the use of minimum quantity lubrication (MQL) method. With such an aim in mind, the application of TOPSIS-AHP method is implemented in order to establish the most favourable cutting parameters for the following values of surface roughness: Ra, Rq and Rz in machining of titanium alloys regarding MQL conditions. The proposed methodology consists of the two stages. At the beginning, tests on turning process were performed on CNC lathe, taking feed rate, approach angle, and cutting speed as input parameters. Then, the TOPSIS-AHP method was applied on the given experimental data and the optimum machining parameters were determined. The findings from current investigations showed that, lower values of cutting speed, feed rate and middle value of approach angle shows the optimal results.


2017 ◽  
Vol 909 ◽  
pp. 80-85 ◽  
Author(s):  
Mohd Rasidi Ibrahim ◽  
Tharmaraj Sreedharan ◽  
Nurul Aisyah Fadhlul Hadi ◽  
Mohammad Sukri Mustapa ◽  
Al Emran Ismail ◽  
...  

Machining parameters is a main aspect in performing turning operations using lathe machines. Cutting parameters such as cutting speed, feed rate and depth of cut gives big influence on the dynamic behavior of the machining system. In machining parts, surface quality and tool wear are the most crucial customer requirements. This is because the major indication of surface quality on machined part is the surface roughness and the value of tool wear. Hence, to improve the surface roughness and minimize the forming of tool wear, the optimum feed rate and cutting speed will be determined. The input parameter such as cutting speed, feed rate and depth of cut always influence the tool wear, surface roughness, cutting force, cutting temperature, tool life and dimensional accuracy. The D2 steel was being investigated from the perspective of the effect of cutting speed and feed rate on its surface roughness and tool wear. The results show that cutting speed is the main parameter which affects the surface roughness where the most optimum parameter would be at cutting speed of 173, 231 and 288 m/min with feed rate of 0.15 mm/rev. The tool wear strongly affected by feed rate where at 0.15 mm/rev the tool wear value is the lowest. The combination of high cutting speed and low feed rate was the best parameter to achieve smooth surface roughness.


2013 ◽  
Vol 773-774 ◽  
pp. 894-901
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

Majority of the components of aerospace and automotive vehicles need different machining operations, mainly for the assembly requirements. The components have to present both high dimensional precision and surface quality. This present work is concerned with the effect of cutting parameters (cutting speed, feed rate and depth of cut) on the surface roughness and the chip formation in turning process. The machining results are compared with LM6 aluminium alloy and TiC reinforced metal matrix composite under the same cutting conditions and tool geometry. The cutting condition models designed based on the Design of Experiments Response Surface Methodology. The objective of this research is to obtaining the optimum cutting parameters to get a better surface quality and also the chip formation and furthermore does not hazardous to the worker and the machined products quality. Results shows that Surface roughness values of LM6-TiC composite are higher as compared LM6 alloy at similar cutting condition. With increasing in cutting speed improves the surface quality. The surface quality increases with decrease of the feed rate and the depth of cut. There are difference chip forms for LM6 aluminium alloy and Al-TiC composite for a similar of cutting condition. Generally, chip formations of both materials are acceptable and favourable for the worker as well as the products and the tools.


2013 ◽  
Vol 685 ◽  
pp. 57-62
Author(s):  
Seyyed Pedram Shahebrahimi ◽  
Abdolrahman Dadvand

One of the most important issues in turning operations is to choose suitable parameters in order to achieve a desired surface finish. The surface finish in machining operation depends on many parameters such as workpiece material, tool material, tool coating, machining parameters, etc. The purpose of this research is to focus on the analysis of optimum cutting parameters to get the lowest surface roughness in turning Titanium alloy Ti-6Al-4V with the insert with the standard code DNMG 110404 under dry cutting condition, by the Taguchi method. The turning parameters are evaluated as cutting speed of 14, 20 and 28 m/min, feed rate of 0.12, 0.14 and 0.16 mm/rev, depth of cut of 0.3, 0.6 and 1 mm, each at three levels. The Experiment was designed using the Taguchi method and 9 experiments were conducted by this process. The results are analyzed using analysis of variance method (ANOVA). The results of analysis show that the depth of cut has a significant role to play in producing lower surface roughness that is about 63.33% followed by feed rate about 30.25%, and cutting speed has less contribution on the surface roughness. Also it was realized that with the use of the confirmation test, the surface roughness improved by 227% from its initial state.


2015 ◽  
Vol 815 ◽  
pp. 268-272 ◽  
Author(s):  
Nur Farahlina Johari ◽  
Azlan Mohd Zain ◽  
Noorfa Haszlinna Mustaffa ◽  
Amirmudin Udin

Recently, Firefly Algorithm (FA) has become an important technique to solve optimization problems. Various FA variants have been developed to suit various applications. In this paper, FA is used to optimize machining parameters such as % Volume fraction of SiC (V), cutting speed (S), feed rate (F), depth of cut (D) and machining time (T). The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.


Sign in / Sign up

Export Citation Format

Share Document