Effect of Curing Methods on Carbonation Depth of Rubberised Fibre Mortar

2015 ◽  
Vol 802 ◽  
pp. 124-129
Author(s):  
Mukaddas Ahmad Musa ◽  
Farah Nora Aznieta Abdul Aziz ◽  
Noor Azline Mohd Nasir

In Malaysia, more than 50,000 tons of used automobile tyres are stockpiled annually. This subsequently causes a major threat to the environment. This article focus on the durability of mortar with treated crumb rubber (TCR) as partial replacement for fine aggregate (FA) and addition of oil palm fruit fibre (OPFF) in the mix. For every 0.5% OPFF additions, there were 10% TCR replacements up to 30%, resulting in 16 different mixes with constant water cement ratio. The specimens were cured either by water ponding or water sprinkling for 28 days, after which they were preconditioned and subsequent carbonation depth measurement was made. The results showed that the carbonation depth lies between 2.5mm to 6.7mm. These confirmed that rubberised fibre mortar achieved carbonation depth of less than 15mm, the tolerable limit.

2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


2017 ◽  
Vol 36 (3) ◽  
pp. 686-690
Author(s):  
NM Ogarekpe ◽  
JC Agunwamba ◽  
FO Idagu ◽  
ES Bejor ◽  
OE Eteng ◽  
...  

The suitability of burnt and crushed cow bones (BCCB) as partial replacement for fine aggregate in concrete was studied. The percentages of replacements of fine aggregates of 0, 10, 20, 30, 40 and 50%, respectively of BCCB were tested considering 1: 2: 4 and 1: 11/2 :3 concrete mix ratios. The cow bones were burnt for 50 minutes up to 92oC before being crushed. Ninety-six (96) concrete cubes of 1: 2: 4 mix ratio and ninety-six (96) concrete cubes of 1 : : 3 mix ratio measuring 150x150x150mm were tested for the compressive strength at 7, 14, 21 and 28 days respectively. The research revealed that the BCCB acted as a retarder in the concrete. Water-cement ratio increased with the increase in the percentage of the BCCB. The mixes of 1:2:4 and 1::3 at 28 days curing yielded average compressive strengths in N/mm2 ranging from 16.49 - 24.29 and 18.71 - 29.73, respectively. For the mix ratios of 1:2:4 and 1:: 3 at 28 days curing age,  it was observed that increase in the BCCB content beyond 40 and 50%, respectively resulted to the reduction of the average compressive strength below recommended minimum strength for use of concrete in structural works.http://dx.doi.org/10.4314/njt.v36i3.4


2018 ◽  
Vol 199 ◽  
pp. 11002
Author(s):  
Kudzai Mushunje ◽  
Mike Otieno ◽  
Yunus Ballim

This paper presents results of a study into the effects of truck tyre crumb rubber particle size, as fine aggregate, on the compressive strength, shrinkage and creep behaviour of structural rubberised concrete. The study is motivated by a growing interest in the use of concrete with waste tyre rubber particles, rubberised concrete, for structural applications. Three tyre crumb rubber sizes (2.36, 1.18 and 0.425 mm) were used to replace 10% by volume of fine mineral aggregates to produce concrete with a target strength of 30 MPa. The concrete was cast water-cured for 28 days and tested for shrinkage and creep for 180 days. Half of the shrinkage and creep samples were sealed with a bitumen seal to prevent drying during testing. Results show a general a decrease in compressive strength with reduction in crumb rubber size. The strength decreases by 22%, 23% and 27% for the 2.36, 1.18 and 0.425 mm mix respectively. Preliminary results show a general increase in both shrinkage and creep deformations in both drying and sealed conditions. The observed increases were checked against the limits provided in design codes to assess the applicability of the material for structural purposes.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Musa Adamu ◽  
Bashar S. Mohammed ◽  
Nasir Shafiq

The rate of waste tire generation globally continues to escalate due to increase in vehicle usage. Scrap tires continue to pose serious environmental, health and aesthetic problems. Due limitation in the recycling of scrap tires, one of the most viable solution is to used crumb rubber from scrap tire as partial replacement to fine aggregate in concrete industry. This is rationalized as the production of concrete hit more than 3.8 billion cubic meters annually, therefore, it could provide a solution on conservation of natural aggregate and as well as improve properties of concrete. However, the major setback in the use of crumb rubber in concrete is loss in strength.  In this paper, crumb rubber was used to partially replaced fine aggregate at 0%, 10%, 20% and 30% by volume in roller compacted concrete for pavement applications to produce roller compacted rubbercrete (RCR) to improve its flexural strength and ductility. Several trials were done to achieve the combined grading as recommended by ACI 211.3R, and finally a combination of 55% fine aggregate, 40% coarse aggregate and 5% fine sand as mineral filler was used. In order to mitigate the effect of strength loss, silica fume and fly ash were used to replace natural fine sand as mineral fillers. The Results showed that fresh density, compressive, splitting and flexural strengths decreases with increase in partial replacement of fine aggregate with crumb rubber. However using silica fume as a mineral filler was successful in mitigating loss in compressive, tensile and flexural strengths for up to 20% crumb rubber replacement level, while fly ash as a mineral filler mitigated loss in strength for up to 10% crumb rubber compared natural fine sand mineral filler. The flexural strength was found to increase with 10% crumb rubber for all type of mineral filler


2020 ◽  
Vol 862 ◽  
pp. 135-139
Author(s):  
Dhabit Zahin Alias Tudin ◽  
Ahmad Nurfaidhi Rizalman

In this study, crumb rubber was used to partially replaced fine aggregate in mortar mixture by 5, 10, 15 and 20 volume percentage (vol%) with untreated and NaOH-treated crumb rubber. There were three (3) different water-cement ratio used which are 0.45, 0.50 and 0.55. Thus, the total number of mixtures was 27. The mortars were tested for flowability, compressive strength, flexural strength and density. Based on the results, higher water cement ratio and percentage of crumb rubber replacement increased the flowability but lowered the density, compressive strength and flexural strength of the rubberized mortar. It was also discovered that the significant effect of water-cement ratio on the fresh and hardened properties of the rubberized mortar was due to the water content in the mixture. Meanwhile, the use of NaOH as treatment to crumb rubber improved the flowability, compressive strength and flexural strength of the rubberized mortar.


2016 ◽  
Vol 866 ◽  
pp. 58-62 ◽  
Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
David O. Olukanni

Reusing of waste glass in concrete production is among the attractive option of achieving waste reduction and preserving the natural resources from further depletion thereby protecting the environment and achieving sustainability. This present study examines the possible reuse of waste glass crushed into fine and coarse aggregate sizes as partial substitute for natural fine and coarse aggregate in concrete. The variables in this study is both the fine and coarse aggregate while the cement and water-cement ratio were held constant. The crushed glass was varied from 0 – 100% in steps of 25% by weight to replace the both the natural fine and coarse aggregate in the same concrete mix. Concrete mixes were prepared using a mix proportion of 1:2:4 (cement: fine aggregate: coarse aggregate) at water-cement ratio of 0.5 targeting a design strength of 20 MPa. Tests were carried out on total number of 90 concrete cube specimens of size 150 x 150 x150 mm and 90concrete cylinder specimens of dimension 100 mm diameter by 200 mm height after 3, 7, 14, 28, 42 and 90 days of curing. Test results indicated that the compressive and split tensile strength of the hardened concrete decreases with increasing waste glass content compared with the control. However, concrete mix made with 25% waste glass content compared significantly well with the control and can be suitably adopted for production of light weight concrete.


2017 ◽  
Vol 9 (2) ◽  
pp. 79-92 ◽  
Author(s):  
Ahmed Tareq NOAMAN ◽  
Badorul Hisham ABU BAKAR ◽  
Hazizan MD. AKIL

Researchers investigated the utilization of crumb rubber aggregate recycled from waste tire in concrete to solve the problem of discarded tire and to produce a green sustainable concrete. However, a reduction in the mechanical properties due to crumb rubber inclusion occurs. Steel fiber rubberized concrete used in this study to provide a balance between the strength loss and sustainable issue. An investigation on the mechanical properties of rubberized concrete combined with hooked – end steel fiber is presented. Rubberized concrete with different replacement ratios of crumb rubber was incorporated in plain and steel fiber concrete mixes via partial replacement of fine aggregate. Four replacement ratios (17.5%, 20%, 22.5%, and 25%) were used to investigate the effect of the partial replacement of fine aggregate by crumb rubber on the mechanical properties of plain and steel fiber concrete. In both mixes, reduction in mechanical properties was observed to be proportionate with the increment of crumb rubber. Finally, a successful combination of steel fiber and crumb rubber was obtained due to improvement of strain capacity under flexural loading.


Sign in / Sign up

Export Citation Format

Share Document