scholarly journals Effect of Water-Cement Ratio on the Properties of NaOH-Treated Rubberized Mortar

2020 ◽  
Vol 862 ◽  
pp. 135-139
Author(s):  
Dhabit Zahin Alias Tudin ◽  
Ahmad Nurfaidhi Rizalman

In this study, crumb rubber was used to partially replaced fine aggregate in mortar mixture by 5, 10, 15 and 20 volume percentage (vol%) with untreated and NaOH-treated crumb rubber. There were three (3) different water-cement ratio used which are 0.45, 0.50 and 0.55. Thus, the total number of mixtures was 27. The mortars were tested for flowability, compressive strength, flexural strength and density. Based on the results, higher water cement ratio and percentage of crumb rubber replacement increased the flowability but lowered the density, compressive strength and flexural strength of the rubberized mortar. It was also discovered that the significant effect of water-cement ratio on the fresh and hardened properties of the rubberized mortar was due to the water content in the mixture. Meanwhile, the use of NaOH as treatment to crumb rubber improved the flowability, compressive strength and flexural strength of the rubberized mortar.

2013 ◽  
Vol 830 ◽  
pp. 435-438
Author(s):  
Hong Xia Wang ◽  
Bo Liu ◽  
Kuang Ping Yuan ◽  
Wu Biao Duan ◽  
Fei Hua Yang ◽  
...  

The paper introduces a kind of foaming plaster with main raw material of α- gypsum, which is produced by utilizing the chemical reaction principles H2O2 was decomposed. Meanwhile,study the changes of density,flexural strength and compressive strength of plaster material performance with the additives in different ratio. The result showed that water-cement ratio, H2O2 foaming agent and water temperature all affect the performance of the foaming plaster.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 590 ◽  
Author(s):  
Zengshun Chen ◽  
Yemeng Xu ◽  
Jianmin Hua ◽  
Xu Wang ◽  
Lepeng Huang ◽  
...  

Graphene oxide (GO) has been widely used as an additive due to its numerous unique properties. In this study, the compressive strength, flexural strength and elasticity modulus of concrete containing 0.02 wt%, 0.05 wt % and 0.08 wt % GO, and its dry shrinkage performance have been experimentally investigated. After the sample preparation, apparatus for compression test and flexural test were used to test the relevant properties of concrete containing GO. The dial indicators were used to measure the shrinkage of samples. The results indicate that GO can considerably improve the compressive strength, flexural strength, and elasticity modulus of concrete at the concrete age of 28 days by 4.04–12.65%, 3.8–7.38%, and 3.92–10.97%, respectively, which are substantially smaller than the increment at the age of 3 d by 5.02–21.51%, 4.25–13.06%, and 6.07–27.45% under a water-cement ratio of 0.35. It was also found that GO can increase the shrinkage strain of concrete. For example, at the age of 60 days, 0.02 wt%, 0.05 wt% and 0.08 wt% GO can increase the shrinkage strain of ordinary concrete by 1.99%, 5.79% and 7.45% respectively under a water-cement ratio of 0.49. The study has advanced our understanding on mechanical and shrinkage behavior of concrete containing GO.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1899-1902
Author(s):  
Yan Kun Zhang ◽  
Yu Cheng Wang ◽  
Xiao Long Wu

In this article, the flexural strength of combined aggregate concrete with four kinds of water-cement ratio (0.3,0.35.0.4, 0.45), and six ceramsite replace rate (0%, 20%, 40%, 60%, 80%, 60%) are studied with comprehensive test method. Experiment shows that the ceramsite replace rate of combined aggregate has greater influence on the flexural strength than the water-cement ratio. The flexural strength increases with the increasing of compressive strength, and the formula of the flexural strength and compressive strength of combined aggregate concrete is given.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2017 ◽  
Vol 36 (3) ◽  
pp. 686-690
Author(s):  
NM Ogarekpe ◽  
JC Agunwamba ◽  
FO Idagu ◽  
ES Bejor ◽  
OE Eteng ◽  
...  

The suitability of burnt and crushed cow bones (BCCB) as partial replacement for fine aggregate in concrete was studied. The percentages of replacements of fine aggregates of 0, 10, 20, 30, 40 and 50%, respectively of BCCB were tested considering 1: 2: 4 and 1: 11/2 :3 concrete mix ratios. The cow bones were burnt for 50 minutes up to 92oC before being crushed. Ninety-six (96) concrete cubes of 1: 2: 4 mix ratio and ninety-six (96) concrete cubes of 1 : : 3 mix ratio measuring 150x150x150mm were tested for the compressive strength at 7, 14, 21 and 28 days respectively. The research revealed that the BCCB acted as a retarder in the concrete. Water-cement ratio increased with the increase in the percentage of the BCCB. The mixes of 1:2:4 and 1::3 at 28 days curing yielded average compressive strengths in N/mm2 ranging from 16.49 - 24.29 and 18.71 - 29.73, respectively. For the mix ratios of 1:2:4 and 1:: 3 at 28 days curing age,  it was observed that increase in the BCCB content beyond 40 and 50%, respectively resulted to the reduction of the average compressive strength below recommended minimum strength for use of concrete in structural works.http://dx.doi.org/10.4314/njt.v36i3.4


2017 ◽  
Vol 25 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Tsai-Lung Weng ◽  
Wei-Ting Lin ◽  
Cheng-Hao Li

The repair of damaged structures is a complicated problem in the construction industry and it is no uniform standard for evaluating the effectiveness of repair materials. Two different redispersible polymer powders, ethylene vinyl acetate (EVA) and polyvinyl acetate-vinyl carboxylate (VA/VeoVa), were added in the repair mortars with two water-cement ratios and three polymer-cement ratios. The effectiveness of repair materials was evaluated according to the physical, mechanical properties and micrographs. Testing program includes setting time, drying shrinkage, thermal expansion, compressive strength, tensile strength, flexural strength, bond strength, X-ray diffraction analysis, scanning electron microscopy observation. Test results show that the specimens with VA/VeoVa and w/c of 0.5 have highest compressive strength, tensile strength, flexural strength and bond strength. The specimen with EVA also has higher strength than control one at the age of 28 days. The drying shrinkage deformation of VA/VeoVa specimen is close to the control one. The specimens with VA/VeoVa have lower thermal expansion than EVA specimen when the water-cement ratio is 0.5 and there is no difference between EVA and VA/VeoVa specimens for the water-cement ratio of 0.6. The micrographs show that adding polymer powder can reduce the pore and improve the durability.


Author(s):  
Harshit Sangtani ◽  
Bhavini Jain ◽  
K Narayana Shenoy

In the present research an attempt has been made to replace some part of fine aggregate (sand) by an industrial waste, the industrial waste under investigation is produced when the PVC pipes are cut into the desired sizes, it is a very thin flaky substance having a specific gravity of 1.5.This material is very voluminous in nature, so it reduces the workability of concrete if used in large percentage. So this material cannot be used in very large quantities but it can successfully replace sand up to 20 percent when used in pavement blocks. Experimentation was done at a water-cement ratio ranging from 0.43-0.35.Compressive strength of the concrete has been evaluated at 7 days, 14 days 21 days and 28 days. Results of the investigation indicate that compressive strength of the concrete decreases as the percentage of PVC waste material increases.7 day strength of the concrete has varied from 35.55 MPa to 70.01 MPa and 28 day strength has varied from 56.7 MPa to 76 MPa. Water absorption was well within the limits and varied from 4.67% to 7.26% by mass. The results revealed that this waste material can satisfactorily replace sand in small amount also it is a great way to dispose of the waste and hence is a step forward in the quest for a greener concrete.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


Sign in / Sign up

Export Citation Format

Share Document