scholarly journals Partial Replacement of Fine Aggregate Using Waste Materials in Concrete as Roof Tile: A Review

2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.

2015 ◽  
Vol 1129 ◽  
pp. 508-515
Author(s):  
D.S.Q. Abg Adenan ◽  
Kartini Kamaruddin

This paper presents a study on durability performance of polymeric waste crumb rubber as partial fine aggregates replacement in concrete grade 30. The use of aggregates as constituent in concrete production commonly lead to a question about the sources of natural aggregates since concrete consumption has been increasing nowadays. Rubberized concrete has been introduced whereby natural fine aggregates are being replaced with crumb rubber in concrete since there are problems with availability of natural sand as fine aggregate material. Besides, polymeric waste materials production has been increasing. Crumb rubber used in this study was manufactured by special mill where scrap tire rubber is grinded and screened into smaller size of particles. Rubberized concrete is produced by mixing with different percentages of 10, 20 and 30% of crumb rubber as fine aggregates replacement. Water cement ratio of 0.53 and curing periods for 28 days and 60 days were considered in this study. The water absorption test was conducted to determine the percentages of water absorption, while water permeability test was conducted to determine the coefficient of permeability in concrete. Absorption and permeability are governed by the capillary pores in the cement paste. Pores that are too large resulted in high absorption and permeability, while pores that are small resulted in a low absorption and permeability. The durability performance in term of water absorption and water permeability in concrete was improved by introducing crumb rubber as polymeric waste materials to replace fine aggregates in concrete. The recycling and reusing of polymeric waste materials in concrete attract the interest worldwide which can promote sustainability and reduce the high environmental impact of the concrete technology.


Author(s):  
Anand G ◽  
Tharunkumar N

Concrete ingredients is different material like binding material (cement+ fly ash), fine aggregate, coarse aggregate and water. Today construction cost is very high with using conventional materials due to unavailability of natural materials. This problem can be solved by total replacement of concrete with different material which is not convenient in terms of required properties. Due to this limitation of unavailability of material which plays the vital role of concrete we have only choice of partial replacement of concrete ingredients by waste materials. Overv4.2 billion tons of cement was consumed globally in 2018 based on survey of world coal association and also cement production emits CO2 in to the atmosphere which is harmful to the nature. If we can partially replace the cement with the material with desirable properties then we can save natural material and reduce emission of CO2 in to the atmosphere. This industrial waste dumping to the nearest site which spoils the land and atmosphere as well as it also affects aesthetics of urban environment so use of this waste material in concrete is cost effective as well as environment friendly way to disposal of waste. The primary objective of this study is to select the waste material which gives desirable properties with concrete. This study includes previous investigation done on the mechanical and chemical properties of concrete produced using partial replacement of cement by waste materials.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 415
Author(s):  
Anandh S ◽  
Gunasekaran K

Concrete is the major composite material used in construction industry, it is strong in Compression and weak in tension and also has high self-weight. The light weight concrete was a alternative to conventional concrete due its low weight it decreases the self weight. Comparatively by using the light weight materials that occur either naturally or industrial waste, these material helps in reducing the cost and to improve the performance. Presently in India, more than 960 million tones of solid waste were being generated annually as by-products during industrial, agricultural mining and other processes. This paper deals with coconut shell concrete, which is one of the solid waste in the environment, and the use of this coconut shell as a replacement to coarse aggregate will reduce the weight of concrete by 25%. The other waste that was disposed mostly was sawdust. It was a byproduct of cutting or drilling of wood with saw or other tool. It is composed of fine particles of wood. It is having many advantages over traditional concrete like low bulk density, better heat preservation and heat insulation property. As said earlier to make concrete strong in tension coconut fiber is added, which is a waste material that left to disposal and as it is strong and stiff will hold the concrete material and also controls the crack. This study investigates on the use of sawdust as partial replacement for fine aggregates in concrete production. Sawdust was used to replace fine aggregates in Conventional and as well as in Coconut Shell concrete from 0%, 5%, 10% and 20%. M25 grade of concrete was selected and testing is evaluated at age of 3, 7 and 28 days. From the results, increase in percentage of saw-dust in concrete cubes led to corresponding reduction in compressive strength values, and the optimum saw-dust content was obtained at 5% in conventional as well as in coconut shell concrete , coconut fiber was added at the optimum value of sawdust on conventional and coconut shell concrete at 1%,2%,3%,4% and 5%. The better strength was obtained at 2% addition of fiber in coconut shell concrete and at 3% addition in conventional concrete. 


Author(s):  
Leela Prasanth U ◽  
Karan Kumar H ◽  
Afzal Basha Syed

Concrete is a compound material composed of fine aggregates and coarse aggregate bonded together with fluid cement that hardens over time.The deficit of natural sand arises the need of alternative materials for replacement of natural sand. The squashed stone residue which is locally accessible modern strong waste material is ordinarily utilized as a fine aggregate in concrete. In the current examination, an exploratory program was carried out to consider the compressive and split tensile quality of concrete made utilizing stone residue as halfway substitution of fine aggregate at an increment of 10%. Zeolite is a pozzolanic material and its pozzolanic action improves the compressivestrength of concrete. Natural zeolites are supplementary cementitious materials. By adding zeolite, the investigation on the experiments will be carried out to determine the compressive strength and split tensile strength of concrete made using zeolite as partial replacement of cement up to 20 percent at an interval of 5 percent just as the way Stone dust is being replaced to achieve the objective of the project, M30 grade of concrete is prepared. The cube and cylindrical samples shall be tested after a curing period of 7 & 28 days.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 488
Author(s):  
Sylvia Kelechi ◽  
Musa Adamu ◽  
Abubakar Mohammed ◽  
Yasser Ibrahim ◽  
Ifeyinwa Obianyo

Waste tire disposal continues to pose a threat to the environment due to its non-biodegradable nature. Therefore, some means of managing waste tires include grinding them to crumb rubber (CR) sizes and using them as a partial replacement to fine aggregate in concrete. However, the use of CR has a series of advantages, but its major disadvantage is strength reduction. This leads to the utilization of calcium carbide waste (CCW) to mitigate the negative effect of CR in self-compacting concrete (SCC). This study investigates the durability properties of SCC containing CR modified using fly ash and CCW. The durability properties considered are water absorption, acid attack, salt resistance, and elevated temperature of the mixes. The experiment was conducted for mixes with no-fly ash content and their replica mixes containing fly ash to replace 40% of the cement. In the mixes, CR was used to partially replace fine aggregate in proportions of 0%, 10%, and 20% by volume, and CCW was used as a partial replacement to cement at 0%, 5%, and 10% by volume. The results indicate that the mixes containing fly ash had higher resistance to acid (H2SO4) and salt (MgSO4), with up to 23% resistance observed when compared to the mix containing no fly ash. In addition, resistance to acid attack decreased with the increase in the replacement of fine aggregate with CR. The same principle applied to the salt attack scenario, although the rate was more rapid with the acid than the salt. The results obtained from heating indicate that the weight loss was reduced slightly with the increase in CCW, and was increased with the increase in CR and temperature. Similarly, the compressive strength was observed to slightly increase at room temperature (27 °C) and the greatest loss in compressive strength was observed between the temperature of 300 and 400 °C. However, highest water absorption, of 2.83%, was observed in the mix containing 20% CR, and 0% CCW, while the lowest water absorption, of 1.68%, was found in the mix with 0% CR, 40% fly ash, and 10% CCW. In conclusion, fly ash is recommended for concrete structures immersed in water, acid, or salt in sulphate- and magnesium-prone areas; conversely, fly ash and CR reduce the resistance of SCC to heat beyond 200 °C.


2019 ◽  
Vol 9 (6) ◽  
pp. 1197 ◽  
Author(s):  
Xinyi Wang ◽  
Chee Chin ◽  
Jun Xia

Recycled aggregates have been widely studied and used in concrete products nowadays. There are still many waste materials that can be used as recycled aggregates other than crushed concrete particles. This paper aims to study the property variations of sustainable concrete paving block incorporating different contents of construction wastes. Five different types of waste materials were used in this project, including: recycled concrete coarse aggregate (RCCA), recycled concrete fine aggregate (RCFA), crushed glass (CG), crumb rubber (CB), and ground granulated blast furnace slag (GGBS). According to the test results of the properties of blocks mixed with different levels of wastes materials, it is concluded that adding both RCCA and RCFA in the block can decrease its strength and increase the water absorption. The suggested replacement levels for RCCA and RCFA are 60% and 20%, respectively. Mixing crushed glass in the concrete paving blocks as a type of coarse aggregates can improve the blocks’ strength and decrease the blocks’ water absorption. Addition of crumb rubber causes a significant deterioration of blocks’ properties except for its slip resistance.


2020 ◽  
Vol 184 ◽  
pp. 01098
Author(s):  
P.Santhi Raj ◽  
G.V.V. Satyanarayana ◽  
M. Sriharshavarma

Concrete has a key role in construction. Study focus on workability of the concrete, Fine Aggregate is partially filled with crumb rubber and M sand, a part of cement is replaced with fly ash. In this investigation the crumb rubber is utilised in place of fine aggregate. The scrap tyre treatment is currently a serious issue against environmental pollution. India stud in forth position in the entire world for rubber tyre market world after china, Europe and the US. Fly ash and M sand is an industrial waste which is included in the concrete. In this investigation workability of concrete is conducted on M20 grade concrete by replacing river side sand with the M sand and crumb rubber at percentage of replacements 0 to 20% at an regular interval of 5%and Compare the results obtained by the modified concrete with the normal concrete.


Author(s):  
Divesh Sharma

In this review article, the usage of bitumen, sisal fiber and the sisal fiber for improving the strength parameters of concrete is discussed in detail. Numerous research studies related to the usage of bitumen, sisal fiber and stone dust are studied in detail to determine the results and outcome out of it. Previous research works showed that all, these materials were enhancing the strength and durability aspects of the concrete and depending upon the research studies certain outcomes has been drawn which are as follows. The studies related to the usage of the bitumen or asphalt in concrete so as to produce bituminous concrete or asphaltic concrete, the previous research works conclude that the maximum strength was attained at 5 percent usage of the bitumen and after further usage the general compressive strength of the concrete starts declining. The previous studies related to the usage of the sisal fiber showed that with the usage of the sisal fiber in the concrete, the strength aspects of concrete were improving and the maximum strength was obtained at 1.5 percent usage of the sisal fiber and after his the strength starts declining. Further the studies related to the usage of the stone dust showed that with the usage of stone dust as partial replacement of the natural fine aggregate the compressive strength of the concrete was improving and it was conclude that with the increase in the percentage of the stone dust, the compressive strength of the concrete was increasing.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


Sign in / Sign up

Export Citation Format

Share Document