Manufacturing of Mini-Channel by Electrical Chemical Machining Processes

2016 ◽  
Vol 842 ◽  
pp. 111-114
Author(s):  
Muslim Mahardika ◽  
Agung Mulianto ◽  
Andi Sudiarso

The manufacturing industry is now growing rapidly in the area of non-conventional machining, especially Electrical Chemical Machining (ECM). The ECM can be used for machining of very hard material and very complex shape. This research is performed in order to manufacture mini-channel, which has a complex shape. The ECM machine cutting conditions are as follow; voltage: 7 Volt, feed rate: 1 .0 mm/minute, electrolyte: Natrium Cloride (NaCl), electrolyte concentration: 15 %, electrolyte speed: 3.32 m/s. The result shows that the mini-channel can be manufactured with the average of Material Removal Rate 0.035 g/min with the overcut average is 0.481 mm, and the surface roughness is 5.19 micro meter.

ROTOR ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 33
Author(s):  
Setiawan Okik Aris ◽  
Djumhariyanto Dwi ◽  
Mulyadi Santoso

EDM wire is one of the non-conventional machinings that is currently widely used in the manufacturing industry because it can process workpieces with hard material and also produces excellent dimensional accuracy. This research was carried out with variable current, voltage and wire speed processes. While the response variable is the material removal rate and cutting width (kerf), this study aims to determine the effect of each factor on each response as well as on the combined response and to find the right combination of parameters to produce optimal response values. The results of the study stated that the current strong factor contributed 89.84% and the wire speed factor was 8.26% against the cutting width response (kerf). The current strong element contributes 87.88% to the material removal rate response. As for the combined response, the influential factor was wire speed with a contribution of 92.79%. The optimal combination of parameters in the combined response is 7 amperes, 5 volts and 10 m / s wire speed. The conclusion of this study informs that the smaller the current strength, the better the value of the cutting width, while the more significant the current force will result in a higher removal rate material. The factor that influences the combined response is wire speed, where the increase in the value of the wire speed increases the amount of the Gray Relational Grade from the combined response. Keywords: Wire EDM, SKD 11 Steel, Taguchi, Optimization


2020 ◽  
Vol 184 ◽  
pp. 01067
Author(s):  
Kosaraju Satynarayana ◽  
Kumkuma Rajkiran ◽  
Pujari Anil kumar ◽  
D Chakradhar

Novel techniques are being focused on the enrichment of the performance characteristics under different machining processes. Cryogenic is one of such novel practices that tunes the surface integrity with vast variations with the traditional machining processes. Dimensional accuracy, surface roughness, material removal rate with less reduction in scrap of material is one of the prior targets of production process. Wire cut Electro Discharge Machining (WEDM) is one method that satisfy with upgrading performance characteristics. In order to step-up these performance characteristics in attaining superior quality, cryogenics practices have collaborated with the WEDM process. Present paper deals with the reviews of the researchers that have been performed over cryogenic treated WEDM process. Effect of performance characteristics like pulse on, pulse off, current, voltage, wire tension, wire feed is discussed with relation to material removal rate, tool wear rate and surface roughness evolved. Key concept of paper is to include the research ideology with best feasible techniques that can prevail in production practice in order of contribute to the forthcoming researches in industrial and production departments.


Author(s):  
Nguyen Thi Bich Nhung ◽  
Dao Thanh Liem ◽  
Truong Quoc Thanh

Based on the number of previous studies, this study aims to investigate the effects of process parameters of an Electrochemical Machining process, which are electrolyte concentration, the voltage applied to the machine, feed rate of the electrode, and Inter-Electrode Gap between tool and workpiece. Aluminum samples of 25 mm diameter x 25 mm height and 30mm diameter x 25mm height of the tool is made up of copper with a circular cross-section with 2 mm internal hole. The design of the system is based on the Taguchi method. Here, the signal-to-noise (S/N) model, the analysis of variance (ANOVA) and regression analyses are applied to determine optimal levels and to investigate the effects of these parameters on surface quality. Finally, the experiments that use the optimal levels of machining parameters are conducted to verify the effects of the process parameters on the surface quality of the products. The results pointed out a set of optimal parameters of the ECM process. The Inter-Electrode Gap between the tool and workpiece has extremely effected on these Material Removal rates and surface roughness. The Material Removal Rate increases with diseases in Inter-Electrode Gap, and Ra diseases with diseases in Inter-Electrode Gap. The experimental results show that maximum Material Removal Rate has obtained with electrolyte concentration at 100 g/l, feed rate at 0.0375 mm/min, the voltage at 15V, and Inter-Electrode Gap at 0.5mm. The minimum Ra has obtained with electrolyte concentration at 80 g/l, feed rate at 0.0468 mm/min, the voltage at 10V, and Inter-Electrode Gap at 0.5mm. This result has led to need studies on these parameters in Electrochemical Machining, which are improving productivities and surface roughness of the products.   


2017 ◽  
Vol 12 (4) ◽  
pp. 72-80 ◽  
Author(s):  
Abbas Fadhil Ibrahim

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Signal-to-noise (S/N), the analysis of variance (ANOVA) was employed to find the optimal levels and to analyze the effect of electrochemical machining parameters on Ra and MRR. The surface roughness of the workpiece was decreased with the increase in current values and electrolyte concentration while causing an increase in material removal rate. The ability of the independent values to predict the dependent values (R2) were 87.5% and 96.3% for mean surface roughness and material removal rate, respectively.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Sign in / Sign up

Export Citation Format

Share Document