Theoretical Investigation of Surface under Soft Mixed Lubrication

2016 ◽  
Vol 851 ◽  
pp. 326-332
Author(s):  
Jesda Panichakorn

This paper presents the effect of surface roughness in line contact under isothermal soft mixed lubrication with non-Newtonian based on Power law viscosity model. The time independent modified Reynolds equation, elasticity equation and the load capacity of asperities equation were numerically solved using finite different method, Newton-Raphson method and multigrid multilevel methods to obtain the film pressure profiles, film thickness profiles and contact pressure in the contact regions. The simulation results showed that the the amplitude of surface roughness has a significant effects on the film pressure, film thickness and surface contact pressure in the contact region. The minimum gap between surface, friction coefficient and asperity load increase when the amplitude of surface roughness increases. For increasing surface velocity, the minimum gap between surface increases but asperity load decreases.

2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


2014 ◽  
Vol 1044-1045 ◽  
pp. 305-309 ◽  
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the performance characteristics of rough thermo-elastohydrodynamic lubrication (TEHL) with non-Newtonian liquid–solid lubricant based on a Power law viscosity model. The time independent modified Reynolds equation, elasticity equation and energy equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness and concentration of solid particles are examined. The simulation results showed surface roughness has rapidly effect on film pressure and film temperature. The effect of solid particle can be increases film thickness and decreases friction coefficient.


2015 ◽  
Vol 736 ◽  
pp. 57-63
Author(s):  
Panichakorn Jesda ◽  
Wongseedakeaw Khanittha

This paper presents the effect of surface roughness on soft elastohydrodynamic lubrication in circular contact with non-Newtonian lubricant. The time independent modified Reynolds equation, elastic equation and lubricant viscosity equation were formulated for compressible fluid. Perturbation method, Newton-Raphson method, finite different method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various the amplitude of surface roughness, surface speed of sphere, modulus of elasticity and radius of sphere. The simulation results showed that the film thickness in contact region depended on the profile of surface roughness. The minimum film thickness decreased but maximum film pressure and friction coefficient increase when the amplitude of surface roughness and modulus of elasticity increased. For increasing surface speeds, the minimum film thickness and friction coefficient increase but maximum film pressure decreases. When radius of sphere increases, the minimum film thickness increases but maximum film pressure and friction coefficient decrease.


2012 ◽  
Vol 482-484 ◽  
pp. 1057-1061
Author(s):  
Sountaree Rattapasakorn ◽  
Jesda Panichakorn ◽  
Mongkol Mongkolwongrojn

This paper presents the effect of surface roughness on the performance characteristics of elastohydrodynamic lubrication with non-Newtonian fluid base on Carreau viscosity model in elliptical contact. The time independent modified Reynolds equation and elastic equation were formulated for compressible fluid. Perturbation method, Newton Raphson method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various amplitude of combined surface roughness, applied loads, speeds and elliptic ratio. Simulation results show surface roughness amplitude has significant affected the film pressure in the contact region. The minimum film thickness decreases but friction coefficient increases when the combined roughness and applied loads increases. The minimum film thickness and friction coefficient both increase as the relative velocity of the ball and the plate is increase. For increasing the elliptic ratio, the minimum film thickness increases but the friction coefficient decreases.


2013 ◽  
Vol 394 ◽  
pp. 96-100
Author(s):  
Khanittha Wongseedakaew

This paper presents the effects of transient rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material. The time independent modified Reynolds equation, and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel method to obtain the film pressure profiles and film thickness in the contact region. The effects of overload, surface roughness and time period are examined. The simulation results show surface roughness has effect on film thickness. The impact of sudden load condition is that the air film pressure increases but film thickness decreases. The minimum film thickness decreases when the amplitude of surface roughness increases. Increasing of impact from sudden loads resulted in minimal film thickness decrease.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


1997 ◽  
Vol 119 (3) ◽  
pp. 456-461 ◽  
Author(s):  
Qian (Jane) Wang ◽  
Fanghui Shi ◽  
Si C. Lee

Numerical analyses of finite journal bearings operating with large eccentricity ratios were conducted to better understand the mixed lubrication phenomena in conformal contacts. The average Reynolds equation derived by Patir and Cheng was utilized in the lubrication analysis. The influence function, calculated numerically using the finite element method, was employed to compute the bearing deformation. The effects of bearing surface roughness were incorporated in the present analysis for the calculations of the asperity contact pressure and the asperity contact area. The numerical solutions of the hydrodynamic and asperity contact pressures, lubricant film thickness, and asperity contact area were evaluated based on a simulated bearing-journal geometry. The calculations revealed that the asperity contact pressure may vary significantly along both the width and the circumferential directions. It was also shown that the asperity contacts and the lubricant film thickness were strongly dependent on the bearing width, asperity orientation, and operating conditions.


Author(s):  
Katsuhiro Ashihara ◽  
Hiromu Hashimoto

In the designs and analysis of engine bearings for automobiles, the precise prediction of the lubrication condition in severe condition is important. In the mixed-elasto-hydrodynamic lubrication analysis, the contact between the projections of surface roughness distributed stochastically is usually considered. This paper describes a theoretical model under the mixed lubrication in the microgrooved bearing. In this modeling, it is assumed that the section shape of microgrooved bearing alloy takes the circular arc form. In the part where contact is caused, the contact pressure is calculated by the Hertzian equation. The elastic deformation of the bearing by the mixed pressure with which oil film pressure and contact pressure are mixed by each allotment ratio is considered. Moreover, the balance requirement between the sum total of mixed pressure on bearing surface and the journal load is met. Under such an assumption, the numerical calculation model is newly obtained to predict the bearing performance in the mixed lubrication of microgrooved bearing. The numeric solutions of EHL based on the mixed lubrication are compared with EHL based on the fluid lubrication. The predicted oil film thickness at the center of bearing by the mixed lubrication model is remarkably thin compared with that by the fluid lubrication model. This shows that the load ability of the oil film thickness decreases by generating contact.


2011 ◽  
Vol 86 ◽  
pp. 898-903
Author(s):  
Hanspeter Dinner

If the contact pressure between mating flanks of a gear set is increased, the lubricant film thickness in between is reduced to a level where the asperities of the flanks start to touch. This case where the surface roughness is of similar value as the EHD film thickness is called “mixed friction”. Due to the metallic contact of the asperities and the movement of the flanks with respect to each other, the flanks are damaged. The damaged flanks appear dull or greyish, hence the name “grey-staining” (or “Graufleckigkeit” in German), see e.g. [4] or [1]. Micropitting are small cracks on the surface of the gears (as opposed to pitting, where the cracks form below the surface), which grow into the material. The size of the damages is about 10-20 mm depth, 25-100 mm length and 10-20 mm width. Micropitting is mainly observed with case carburized gears but may also be found in nitrided, induction hardened or through hardened gears. Micropitting mainly occurs in areas of negative specific sliding. Negative specific sliding is to be found along the path of contact between point A and C on the driving gear and between point C and E on the driven gear.


2000 ◽  
Vol 123 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi ◽  
Michael H. Hoeprich

In this paper a model is presented to investigate the start up condition in elastohydrodynamic lubrication. During start up the lubrication condition falls into the mixed lubrication regime. The transition from solid contact to lubricated contact is of importance when investigating the start up process and its effects on bearing performance. The model presented uses the multigrid multilevel method to solve the lubricated region of the contact and a minimization of complementary energy approach to solve the solid contact region. The FFT method is incorporated to speed up the film thickness calculation. An iteration scheme between the lubrication and the solid contact problems is used to achieve the solution of the mixed lubrication contact problem. The results of start up with smooth surfaces are provided for the case when speed increases from zero to desired speed in one step and the case when speed is linearly increased to desired speed. The details of the transition from full solid contact to full lubricated contact in EHL start up are presented. The change of pressure and film thickness as well as contact forces and contact areas are discussed.


Sign in / Sign up

Export Citation Format

Share Document