Municipal Solid Waste Characteristic and Energy Potential in Piyungan Landfill

2020 ◽  
Vol 898 ◽  
pp. 58-63
Author(s):  
Adolf Leopold S.M. Sihombing ◽  
Ragil Darmawan

The daily waste tonnage at Piyungan landfill is 600 tons consisting of organic and combustible waste which can be used as an energy source. The aim of this study is to determine the potential energy of waste in the Piyungan landfill by its characteristics based on technology options including landfill gas, anaerobic digestion, gasification, and incineration. The Piyungan landfill mostly contain organic waste, up to 62.1% and combustible waste (RDF) at 26.8%. Moisture content of Piyungan’s RDF is higher than international standards for RDF as raw material in several countries. The various result for Nett Calorific Value is about 7.27 MJ/kg for fresh waste, 12.78 MJ/kg for RDF, 1.74 MJ/kg for market waste and 4.14 MJ/kg for mining waste. Landfill gas can generate energy up to 1.2 MW at the beginning and reaches 2 MW during peak periods. The potential energy by using anaerobic digestion and gasification technology are 1.54 MW and 3.12 MW. By incinerate fresh waste, the potential energy can be generated up to 9 MW and 4.39 MW when incinerate RDF waste only. Calculation of potential energy can be used as a basis for selecting the right technology, especially for economic feasibility for each technology.

2021 ◽  
Vol 10 (2) ◽  
pp. 021-027

Sawdust is often used as fuel for basic domestic needs like cooking, heating etc, with the application of the right technological procedure, the chemical energy in sawdust can be converted to electrical energy. sawdust is a usually a waste from timber processing industries and can pollute the environment if not properly disposed or utilized. Electricity can be generated from sawdust directly and sawdust can be processed into other products such as sawdust briquettes, pyrolysis oil, bioethanol and producer gas which can all be used to produce electricity using either a coal based thermal plant, oil based thermal plant and gas depending on the most suitable and efficient. As the calorific value of sawdust is dependent on the moisture content of the wood and the type of wood used, hence average calorific value of sawdust was used for this research work. In this study, the heat contents of sawdust and its various products were considered as fuels for divers power plants that is most suitable accordingly. This paper uses mathematical analysis to determine the amount of electrical energy produced from sawdust and it’s products. Sawdust briquettes was found to be the most efficient in terms of output power when a coal based thermal plant is utilized, the next being the utilization of a plain sawdust as fuel for a coal based thermal plant, the most optimal for the generation of electrical energy among the derivative of sawdust was pyrolysis oil being used as fuel in an oil based thermal plant.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
D. Monarca ◽  
M. Cecchini ◽  
A. Colantoni ◽  
S. Di Giacinto ◽  
A. Marucci ◽  
...  

In this work the amount of biomass available by the hazelnuts pruning in the province of Viterbo was investigated. At present, the pruning’s residues are destroyed by farmers directly in the field, at the end of the pruning; in this way a large quantity of biomass, represented by hazelnut’s prunings, is lost; the residues obtained from the hazelnut’s pruning, are an important source of biomass that could be used for thermal energy production. The aim of this work is to realize a map with the estimated energy potential from hazelnut pruning biomass, in the province of Viterbo. In the first phase the amount of biomass obtained from a hectare of hazelnut’s cultivationwas estimated:sampling were carried out in some municipalities of Viterbo while hazelnut pruning was taking place, from January to March.In the field, biomass was weighed and some pieces of wood were collected for laboratory analysis; in particular humidity of biomass, low calorific value, ashand the content of carbon (C), hydrogen (H) and nitrogen (N) were determined. In the calculation of the biomass were considered the age of the plants and the number of plants per hectare. The results show that the amount of biomass obtained from pruning of hazelnuts varies with the age of plants, but even more so by the number of plants per hectare. The average value of biomass obtained from pruning of a hectare of land is just under 0,9 t. Knowing the net calorific value of the hazelnut wood and the number of hectares cultivated for each municipality, a map of thermal potential energy has been realized.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3014 ◽  
Author(s):  
Jakub Frankowski ◽  
Maciej Zaborowicz ◽  
Jacek Dach ◽  
Wojciech Czekała ◽  
Jacek Przybył

In relation to the situation caused by the pandemic, which may also take place in the future, there is a need to find effective solutions to improve the economic situation of the floristry industry. The production and sale of flowers is time-consuming and long-term. Therefore, any information that causes the impossibility of selling the plants will result in a reduction of profitability or bankruptcy of such companies. Research on rationally utilizing biowaste from plant cultivation as well as unsold flowers for environmental protection and effective use of their potential as a raw material for bioenergy production were examined in this article. The aim of this study was to analyze the energetic potential of the biodegradable fraction of waste from floriculture. The trials included floricultural waste containing the stems, leaves and flowers of different species and hybrid tulips (Tulipa L.), roses (Rosa L.), sunflowers (Helianthus L.) and chrysanthemums (Dendranthema Des Moul.). Their biogas and methane production as well as heat of combustion were determined experimentally. The calorific value was calculated on the basis of results from selected floricultural waste and its chemical composition. The biogas production was tested on different levels of plant material fragmentation (chaff, macerate) in fermentation processes with two ranges of temperature (meso- and thermophilic fermentation). The presented results show that the highest calorific values were determined for dry stems of roses (18,520 kJ/kg) and sunflowers (18,030 kJ/kg). In turn, the lowest were obtained for dried chrysanthemums and tulips, for which the heating value reached 15,560 kJ/kg and 15,210 kJ/kg. In addition, based on one ton of the fresh mass of biowaste from floriculture, the largest biogas production including the control was obtained from the chrysanthemum chaff by mesophilic anaerobic digestion. Moreover, the largest volume of methane was received by thermophilic anaerobic digestion of roses. The highest content of biomethane (56.68%) was reached by thermophilic fermentation of roses. The energy production of the analyzed substrates was also calculated, based on the amount of biogas produced in the containers for anaerobic digestion. Additionally, a deep neural network model, which predicted the production of methane gas, was created. Owing to the properties of the network, the level of significance of variables used for modelling and prediction of biogas production was determined. The neural modelling process was carried out with the use of the H2O program.


2019 ◽  
Author(s):  
◽  
Ighodaro Osagie

This study is focused on the anaerobic digestion of poultry waste to produce biogas. Waste was collected from three different poultry farms (Sekela farm, Emarldene and Parkside poultry industry) in Kwazulu-Natal, South Africa. The aim is to assess energy from poultry waste in Kwazulu-Natal and to enhance the process of biogas production by treating the impurities of sulphur content, moisture and carbon dioxide in the biogas. The objectives are: to determine the energy potential of poultry waste in Kwazulu-Natal region, to increase the energy density of the biogas by the removal of moisture content, incombustible and corrosive gas and to assess techno-economic feasibility of biogas generation from poultry waste. 1 kg of each waste was thoroughly mixed with 3 L of water and loaded into ten digesters with each water bath (thermal conductor) bearing two digesters. The slurry was investigated using water displacement method to determine biogas produced for a period of 21 days and at an average temperature of 30 0C, 31 0C, and 32 0C respectively. Production started on the 3rd day for each digester at different temperatures (30 0C, 31 0C, and 32 0C), and attained maximum value on the 14th and 15th days. The maximum amount of biogas produced was 265.6 ml at a temperature of 32 0C from waste A (Sekela farm). At 32 0C, an optimal biogas yield of 421.6 ml/g VS was observed from Sekela farm (poultry waste A) compared to Emarldene (370.10 ml/g) and Parkside poultry industry (349.10 ml/g) in KwaZulu-Natal. Biogas was collected from the digester with the maximum volume of biogas produced using 100 µʟ gas syringe and was taking to Gas chromatography for characterization. The result showed that it was composed of about 57.71 % methane (CH4), 26.8 % carbon dioxide (CO2), 0.8 % nitrogen (N2), traces of hydrogen sulfide (H2S), fractions of water vapor, and other impurities which the detector was unable to quantify with an energy potential of 0.028 MJ/ml. Purification and Upgrade system was comprised of one column charged with steel wool (iron sponge), and two cylinders charged with pressurized water and silica gel to treat H2S, CO2, and water vapor in the biogas for improvement of its energy density. Biogas was collected from the purified system using gas syringe to the Gas chromatography for characterization and result showed that it is composed of about 84.56 % CH4 and energy potential of 0.046 MJ/ml. The result confirmed that the biogas heating value/energy density was improved/increased using steel wool, pressurized water and silica gel as biogas contaminants removal. Techno-economic studies were carried out to assess the techno-economic feasibility of a small-scale biogas plant using poultry waste in KwaZulu-Natal. A fixed dome digester was selected as the most convenient technology for the community. Result showed that 2,160 kWh per year of energy could be produced from about 4,000 kg of poultry waste and the payback time was eleven years and nine months. It showed that it is techno-economically feasible to use a fixed dome digester for energy generation for domestic usage and is cost-effective. In conclusion, poultry waste as a feedstock is suitable for anaerobic digestion, producing methane which can be used as an energy source and which can be purified to improve its energy potential. Biogas optimization is dependable on: temperature, physio-chemical characteristics of waste, pH and retention time e.g. at same temperature (either 30 0C, 31 0C or 32 0C) and time, waste A production is higher than waste B and C because of its favorable physio-chemical characteristics and pH-value. It is deduced that the energy potential in poultry waste could be determine by treating the waste via anaerobic digestion and the increase in the energy density of the waste is dependable on temperature, pH, retention time and physio-chemical characteristics of the waste.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 556 ◽  
Author(s):  
Marek Mysior ◽  
Maciej Tomaszewski ◽  
Paweł Stępień ◽  
Jacek A. Koziel ◽  
Andrzej Białowiec

A significant challenge in the utilization of alternative gaseous fuels is to use their energy potential at the desired location, considering economic feasibility and sustainability. A potential solution is a compression, transportation in pressure tanks, and generation of electricity and heat directly at the recipient. In this research, the potential for generating syngas from abundant waste substrates was analyzed. The sewage sludge (SS) was used as an example of a bulky and abundant resource that could be valorized via gasification, compression, and transport to end-users in containers. A model was developed, and theoretical analyses were completed to examine the influence of the calorific value of the syngas produced from the SS gasification (under different temperatures and gasifying agents) on the efficiency of energy transportation of compressed syngas. First, the gasification simulation was carried out, assuming equilibrium in a downdraft gasifier (reactor) from 973–1473 K and five gasifying agents (O2, H2, CO2, water vapor, and air). Molar ratios of the gasifying agents to the (SS) C ranged from 0.1–1.0. The model predicted syngas composition, lower calorific values (LHV) for a given molar ratio of the gasification agent, and compressibility factor. It was shown that the highest LHV was obtained at 0.1 molar ratio for all gasifier agents. The highest LHV (~20 MJ∙(Nm3)−1) was obtained by gasification with H2 and the lowest (~13 MJ∙(Nm3)−1) in the case of air. Next, the available syngas volume in a compressed gas transportation unit and the stored energy was estimated. The largest syngas volume can be transported when O2 is used as a gasifying agent, but the highest amount of transported energy was estimated for gasification with H2. Finally, the techno-economic analyses showed that syngas from SS could be competitive when the energy of compressed syngas is compared with the demand of an average residential dwelling. The developed syngas energy transport system (SETS) concept proposes a new method to distribute compressed syngas in pressure tanks to end-users using all modes of transport carrying intermodal ISO containers. Future work should include the determination of energy demand for syngas compression, including pressure losses, heat losses, and analysis of the influence of syngas on storage and compression devices.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
D. Monarca ◽  
M. Cecchini ◽  
A. Colantoni ◽  
S. Di Giacinto ◽  
A. Marucci ◽  
...  

In this work the amount of biomass available by the hazelnuts pruning in the province of Viterbo was investigated. At present, the pruning’s residues are destroyed by farmers directly in the field, at the end of the pruning; in this way a large quantity of biomass, represented by hazelnut’s prunings, is lost; the residues obtained from the hazelnut’s pruning, are an important source of biomass that could be used for thermal energy production. The aim of this work is to realize a map with the estimated energy potential from hazelnut pruning biomass, in the province of Viterbo. In the first phase the amount of biomass obtained from a hectare of hazelnut’s cultivationwas estimated:sampling were carried out in some municipalities of Viterbo while hazelnut pruning was taking place, from January to March.In the field, biomass was weighed and some pieces of wood were collected for laboratory analysis; in particular humidity of biomass, low calorific value, ashand the content of carbon (C), hydrogen (H) and nitrogen (N) were determined. In the calculation of the biomass were considered the age of the plants and the number of plants per hectare. The results show that the amount of biomass obtained from pruning of hazelnuts varies with the age of plants, but even more so by the number of plants per hectare. The average value of biomass obtained from pruning of a hectare of land is just under 0,9 t. Knowing the net calorific value of the hazelnut wood and the number of hectares cultivated for each municipality, a map of thermal potential energy has been realized.


ISRN Forestry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dmitry Tarasov ◽  
Chander Shahi ◽  
Mathew Leitch

Additives play a major role in wood pellet characteristics and are a subject of major interest as they act as binding agents for the biomass raw material. Past research has reported the use of lignosulphonate, dolomite, starches, potato flour and peel, and some motor and vegetable oils as additives for wood pellet production. This paper reviews the available research on the effect of different additives on wood pellets' physical and thermal characteristics. It was found that lignosulphonate and starch additives improve the mechanical durability but tend to reduce the calorific value of the wood pellets. Motor and vegetable oil additives increase the calorific value minimally but significantly increase carbon monoxide emissions. Corn starch and dolomite additives also significantly increase carbon monoxide emissions. In order to produce wood pellets with desired physical and thermal characteristics, a suitable additive with the right biomass material should be used.


2018 ◽  
Vol 48 (10) ◽  
pp. 1194-1203
Author(s):  
Patricia E. Oliveira ◽  
Paola Leal ◽  
Cristian Pichara

As the southernmost country in Latin America, Chile has more than 12 cities on alert for particle pollution. These warnings are issued according to the air quality index, which is partly based on the concentration of coarse and fine particles. Coupled with this, there is also a significant need to use renewable energy for heating. This study describes the production of pellets using Eucalyptus nitens (H. Deane & Maiden) Maiden sawdust for use as a heating fuel. Pinus radiata D. Don was also included to produce the profile that is required for commercial-grade fuel pellets. Finally, we also suggest the use of sodium lignosulfonate as a natural binder to complement the low adhesiveness of the main raw material (E. nitens), as well as enhance the calorific value of the mixture. The results reveal that the different mixtures of eucalyptus and pine were all satisfactory, regardless of their proportions. The pellets made with sodium lignosulfonate proved to have a high calorific value, making them an attractive product; however, the formulations also had a high level of ash content (1.15% to 1.85%), which is close to the limit allowed by international standards.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-8
Author(s):  
Veni Aprilia Lestari ◽  
Trisaksono Bagus Priambodo

Gasification of biomass can be used to produce fuel gas that could potentially be used as a powersource for the sustainable development. The main aim of this study is to determine the effect of lignin,cellulose, proximate and ultimate of ramie wood chip biomass and shell coffee to produce gas and thepotential for regional electricity generated. Research carried out by the analysis of lignin and cellulose,proximate and ultimate, calorific value, gasification, composition gases and energy potential. From theresearch results, the waste of coffee shells and ramie wood chips were used as a new energy source toproduce syngas by means of the gasification process. The highest lignin content was for 45.10% coffeeshell and the lowest for flax wood chips was 18.26. Meanwhile, the highest cellulose content was hempwood chips 44.82% and the lowest was coffee skin shell 17.93%. The potential energy produced fromgasified gas provides a correlation with levels of lignin and cellulose. The higher the lignin content andthe greater the cellulose content, the higher energy that occurs in the coffee shell shells of 5.78 kW, andvice versa what happens to hemp wood chips with low lignin levels and high cellulose content providesa potential energy of 4. 64 kW


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2417 ◽  
Author(s):  
Adam Smoliński ◽  
Janusz Karwot ◽  
Jan Bondaruk ◽  
Andrzej Bąk

This paper aims to analyze the economic feasibility of generating a novel, innovative biofuel—bioenergy—obtained from deposit bio-components by means of a pilot installation of sewage sludge bio-conversion. Fuel produced from sewage sludge biomass bears the potential of being considered a renewable energy source. In the present study, 23 bioconversion cycles were conducted taking into consideration the different contents, types of high carbohydrate additives, moisture content of the mixture as well as the shape of the bed elements. The biofuel was produced using post fermentation sewage sludge for industrial energy and heat generation. Based on the presented research it was concluded that the composite biofuel can be co-combusted with hard coal with the optimal percentage share within the range of 20–30% w/w. Sewage sludge stabilized by means of anaerobic digestion carried out in closed fermentation chambers is the final product. The average values of the CO2, CO, NO, NOx and SO2 concentrations in flue gas from co-combustion of a bioconversion product (20% w/w) and coal were 5.43%, 1903 ppm, 300 ppm, 303 ppm and 179 ppm, respectively. In total, within a period of 4.5 years of the plant operation, 1853 Mg of fuel was produced and successfully co-combusted with coal in a power plant. The research demonstrated that in the waste water treatment sector there exists energy potential in terms of calorific value which translates into tangible benefits both in the context of energy generation as well as environmental protection. Over 700,000 Mg of bio-sewage sludge is generated annually in Poland. According to findings of the study presented in the paper, the proposed solution could give 970,000 Mg of dry mass of biomass qualified as energy biomass replacing fossil fuels.


Sign in / Sign up

Export Citation Format

Share Document