scholarly journals Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Deep Neural Modeling Methods

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3014 ◽  
Author(s):  
Jakub Frankowski ◽  
Maciej Zaborowicz ◽  
Jacek Dach ◽  
Wojciech Czekała ◽  
Jacek Przybył

In relation to the situation caused by the pandemic, which may also take place in the future, there is a need to find effective solutions to improve the economic situation of the floristry industry. The production and sale of flowers is time-consuming and long-term. Therefore, any information that causes the impossibility of selling the plants will result in a reduction of profitability or bankruptcy of such companies. Research on rationally utilizing biowaste from plant cultivation as well as unsold flowers for environmental protection and effective use of their potential as a raw material for bioenergy production were examined in this article. The aim of this study was to analyze the energetic potential of the biodegradable fraction of waste from floriculture. The trials included floricultural waste containing the stems, leaves and flowers of different species and hybrid tulips (Tulipa L.), roses (Rosa L.), sunflowers (Helianthus L.) and chrysanthemums (Dendranthema Des Moul.). Their biogas and methane production as well as heat of combustion were determined experimentally. The calorific value was calculated on the basis of results from selected floricultural waste and its chemical composition. The biogas production was tested on different levels of plant material fragmentation (chaff, macerate) in fermentation processes with two ranges of temperature (meso- and thermophilic fermentation). The presented results show that the highest calorific values were determined for dry stems of roses (18,520 kJ/kg) and sunflowers (18,030 kJ/kg). In turn, the lowest were obtained for dried chrysanthemums and tulips, for which the heating value reached 15,560 kJ/kg and 15,210 kJ/kg. In addition, based on one ton of the fresh mass of biowaste from floriculture, the largest biogas production including the control was obtained from the chrysanthemum chaff by mesophilic anaerobic digestion. Moreover, the largest volume of methane was received by thermophilic anaerobic digestion of roses. The highest content of biomethane (56.68%) was reached by thermophilic fermentation of roses. The energy production of the analyzed substrates was also calculated, based on the amount of biogas produced in the containers for anaerobic digestion. Additionally, a deep neural network model, which predicted the production of methane gas, was created. Owing to the properties of the network, the level of significance of variables used for modelling and prediction of biogas production was determined. The neural modelling process was carried out with the use of the H2O program.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3573 ◽  
Author(s):  
Meneses-Quelal Orlando ◽  
Velázquez-Martí Borja

The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2018 ◽  
Vol 64 (No. 3) ◽  
pp. 128-135 ◽  
Author(s):  
Radmard Seyed Abbas ◽  
Alizadeh Hossein Haji Agha ◽  
Seifi Rahman

The effects of thermal (autoclave and microwave irradiation (MW)) and thermo-chemical (autoclave and microwave irradiation – assisted NaOH 5N) pretreatments on the chemical oxygen demand (COD) solubilisation, biogas and methane production of anaerobic digestion kitchen waste (KW) were investigated in this study. The modified Gompertz equation was fitted to accurately assess and compare the biogas and methane production from KW under the different pretreatment conditions and to attain representative simulations and predictions. In present study, COD solubilisation was demonstrated as an effective effect of pretreatment. Thermo-chemical pretreatments could improve biogas and methane production yields from KW. A comprehensive evaluation indicated that the thermo-chemical pretreatments (microwave irradiation and autoclave- assisted NaOH 5N, respectively) provided the best conditions to increase biogas and methane production from KW. The most effective enhancement of biogas and methane production (68.37 and 36.92 l, respectively) was observed from MW pretreated KW along with NaOH 5N, with the shortest lag phase of 1.79  day, the max. rate of 2.38 l·day<sup>–1</sup> and ultimate biogas production of 69.8 l as the modified Gompertz equation predicted.


2011 ◽  
Vol 356-360 ◽  
pp. 2510-2514 ◽  
Author(s):  
Ming Fen Niu ◽  
Sai Yue Wang ◽  
Wen Di Xu ◽  
An Dong Ge ◽  
Hao Wang

In order to improve the rate of degradation of cellulose in corn straw, the study has an important significance that compost corn straw with inoculating high-efficient microbe agents. The experiment inoculated a cellulose-degrading strain F2 which was screened from compost into compost pretreatment, the VS of corn straw reduced from 93.14% to 71.69% after 15 days, the content of cellulose reduced from 34.12g·kg-1 to 25.66g·kg-1, the rate of degradation was 24.79% which was 10.60% higher than those without the strain. An anaerobic fermentation experiment was carried out with the two groups of composted corn straw and mixed pig feces with a certain ratio, and investigations of biogas production, pH, content of volatile fatty acids(VFA) and rate of methane production were conducted. The results were that the corn straw composted with the cellulose-degrading strain peaked 4 days earlier, the maximal daily biogas production was 1470mL, the cumulative biogas production reached 23641mL which was 16.87% higher and operated stably earlier. The study showed that the cellulose-degrading strain had a strong capacity to degrade cellulose in corn straw, and then improved the performance of anaerobic digestion.


2020 ◽  
Vol 14 (4) ◽  
pp. 551-557
Author(s):  
Yongku Li ◽  
Xiaomin Hu ◽  
Lei Feng

The changing parameters, as the biogas production rate, the methane production rate, the cumulative biogas amount, the cumulative methane amount, the biogas composition, pH etc. in high temperature anaerobic fermentation of chicken manure and stalks were analyzed by experiments with different mass ratios of chicken manure or livestock manure and stalks with a high C/N ratio. The methane production mechanism of high temperature anaerobic digestion of chicken manure and stalks was discussed in detail. It showed that not only the biogas production rates but also the methane production rates of R1–R7 demonstrated the trend of initial increase and then decrease after 50 d of high temperature anaerobic digestion. Besides, the gas production of R1 with pure chicken manure stopped on the 30th d of the reaction. The gas production of other groups R2–R7 also stopped on the corresponding 34th, 36th, 36th, 37th, 37th, and 37th day, respectively. At the end of the reaction, the cumulative biogas amounts and the cumulative methane amounts of R1–R7 were 411.58 and 269.54, 459.91 and 314.41, 425.32 and 294.11, 401.85 and 272.54, 382.63 and 257.07, 363.04 and 218.16, and 257.15 and 160.10 N ml/(g VS). The biogas slurry pH of R1–R7 all demonstrated a trend of initial decrease and then increase, e. g., pH of R2 reached the minimum of 5.94 on the 5th day. pH values of other groups were between 6.01 and 6.39. After the addition of 4 g of sodium bicarbonate on the 7th day, biogas slurry pH of R1–R7 all increased. pH was maintained between 7.16 and 7.44 until the end of the reaction.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1094
Author(s):  
Marco Chiappero ◽  
Francesca Cillerai ◽  
Franco Berruti ◽  
Ondřej Mašek ◽  
Silvia Fiore

Biochar (BC) recently gained attention as an additive for anaerobic digestion (AD). This work aims at a critical analysis of the effect of six BCs, with different physical and chemical properties, on the AD of mixed wastewater sludge at 37 °C, comparing their influence on methane production and AD kinetics. AD batch tests were performed at the laboratory scale operating 48 reactors (0.25 L working volume) for 28 days with the addition of 10 g L−1 of BC. Most reactors supplemented with BCs exhibited higher (up to 22%) methane yields than the control reactors (0.15 Nm3 kgVS−1). The modified Gompertz model provided maximum methane production rate values, and in all reactors the lag-phase was equal to zero days, indicating a good adaptation of the inoculum to the substrate. The potential correlations between BCs’ properties and AD performance were assessed using principal component analysis (PCA). The PCA results showed a reasonable correlation between methane production and the BCs’ O–C and H–C molar ratios, and volatile matter, and between biogas production and BCs’ pore volume, specific surface area, and fixed and total carbon. In conclusion, the physic-chemical properties of BC (specifically, hydrophobicity and morphology) showed a key role in improving the AD of mixed wastewater sludge.


2020 ◽  
Vol 18 (4) ◽  
pp. 561-564
Author(s):  
Anja Antanasković ◽  
Maja Bulatović ◽  
Marica Rakin ◽  
Zorica Lopičić ◽  
Tatjana Šoštarić ◽  
...  

Anaerobic digestion is a natural process of organic material degradation by different kinds of microorganisms in the absence of oxygen. This process is used for industrial purpose to manage waste streams or to produce biogas. It gives a major contribution in reduction of harmful effects of organic waste disposal to the environment. The aim of agricultural waste pretreatment in biogas production is to decrease the retention time, improve utilization of raw material and improve the overall productivity and energy efficiency of the production process. In this paper the effects of combined chemical and mechanical pretreatment of corn straw biomass on biogas yield during anaerobic digestion of the feedstock were analyzed. The impact of pretreatment and process parameters in biogas production was analyzed by process simulation using the software SuperPro Designer. Using this tool, it was shown that alkaline pretreatment leads to an decrease of degradation time along with an increase in biogas yield.


Environments ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 44 ◽  
Author(s):  
John Loughrin ◽  
Nanh Lovanh

Digestion of wastes to produce biogas is complicated by poor degradation of feedstocks. Research has shown that waste digestion can be enhanced by the addition of low levels of aeration without harming the microbes responsible for methane production. This research has been done at small scales and without provision to retain the aeration in the digestate. In this paper, low levels of aeration were provided to poultry litter slurry through a sub-surface manifold that retained air in the sludge. Digestate (133 L) was supplied 0, 200, 800, or 2000 mL/day air in 200 mL increments throughout the day via a manifold with a volume of 380 mL. Digesters were fed 400 g of poultry litter once weekly until day 84 and then 600 g thereafter. Aeration at 200 and 800 mL/day increased biogas production by 14 and 73% compared to anaerobic digestion while aeration at 2000 mL/day decreased biogas production by 19%. Biogas quality was similar in all digesters albeit carbon dioxide and methane were lowest in the 2000 mL/day treatment. Increasing feed to 600 g/week decreased gas production without affecting biogas quality. Degradation of wood disks placed within the digesters was enhanced by aeration.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Thales H. F. Costa ◽  
Vincent G. H. Eijsink ◽  
Svein Jarle Horn

Abstract Background The recent discovery that LPMOs can work under anaerobic conditions when supplied with low amounts H2O2 opens the possibility of using LPMOs as enzyme aids in biogas reactors to increase methane yields from lignocellulosic materials. We have explored this possibility by studying anaerobic digestion of various lignocellulosic materials: Avicel, milled spruce and birch wood, and a lignin-rich hydrolysis residue from steam-exploded birch. The digestions were added LPMOs and various cellulolytic enzyme cocktails and were carried out with or without addition of H2O2. Results In several cases, enzyme addition had a beneficial effect on methane production, which was partly due to components present in the enzyme preparations. It was possible to detect LPMO activity during the initial phases of the anaerobic digestions of Avicel, and in some cases LPMO activity could be correlated with improved methane production from lignocellulosic materials. However, a positive effect on methane production was only seen when LPMOs were added together with cellulases, and never upon addition of LPMOs only. Generally, the experimental outcomes showed substrate-dependent variations in process efficiency and the importance of LPMOs and added H2O2. These differences could relate to variations in the type and content of lignin, which again will affect the activity of the LPMO, the fate of the added H2O2 and the generation of potentially damaging reactive-oxygen species. The observed effects showed that the interplay between cellulases and LPMOs is important for the overall efficiency of the process. Conclusion This study shows that it may be possible to harness the power of LPMOs in anaerobic digestion processes and improve biogas production, but also highlight the complexity of the reaction systems at hand. One complicating factor was that the enzymes themselves and other organic components in the enzyme preparations acted as substrates for biogas production, meaning that good control reactions were essential to detect effects caused by enzyme activity. As also observed during regular aerobic enzymatic digestion of lignocellulosic biomass, the type and contents of lignin in the substrates likely plays a major role in determining the impact of LPMOs and of cellulolytic enzymes in general. More work is needed to unravel the interplay between LPMOs, O2, H2O2, and the multitude of redox-active components found in anaerobic bioreactors degrading lignocellulosic substrates.


Sign in / Sign up

Export Citation Format

Share Document