The Mechanical Properties of Mimic Skin

2020 ◽  
Vol 899 ◽  
pp. 73-80
Author(s):  
Nur Nabila Mohd Nazali ◽  
Nur Ani Aniqah Anirad ◽  
Nor Fazli Adull Manan

This paper focuses on the characterized of the mechanical properties and hyper elastic behavior of lab made skin. Bovine Serum Albumin (BSA) combined with gelatin as a base. BSA is a plasma lead concentrations or heparin plasma which is separated from blood sample and it is not associated with significant changes in iron or hemoglobin concentrations. In general, the gelatin is widely used as the best material for skin substitution since it exhibits the characteristic of human skin. However, the lab made skin layer was made of non-halal type gelatin (Type B). The methodology process started by adding the BSA and using the type A gelatin to carry out the mechanical properties and hy-per elastic behavior of halal lab made skin layer. A uniaxial tensile test standard that being used in this study is ASTM D412. The raw data (Load-Extension) from computational was plotted on graph stress-strain. The numerical approach such as Mooney-Rivlin model and Yeoh’s model were selected to analyze a stress-stretch of composition gelatin and BSA. From the results Mooney-Rivlin model, the con-stant, C1 is in the range of (0.0187-0.0658) MPa and C2 is in the range of (0.0628-0.0737) MPa. Meanwhile the constant, CP for Yeoh model is in the range of (0.0748-0.0861) MPa. As a conclusion, the composition of gelatin and Bovine Serum Albumin is a best combina-tion as it increases the strength of the lab made skin layer. Therefore, the most suitable composition is 10 wt.% of gelatin and Bovine Serum Albumin.

2021 ◽  
Author(s):  
Basel A. Khader ◽  
Sean A. F. Peel ◽  
Mark R. Towler

Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 MPa, but set in under 2 min. Here, the authors design injectable GPCs (IGPCs) based on zinc-containing, Al-free silicate compositions containing GeO2, substituted for ZnO at 3% increments through the series. The setting reactions, injectability and mechanical properties of these GPCs were evaluated using both a hand-mix (h) technique, using a spatula for sample preparation and application and an injection (i) technique, using a 16-gauge needle, post mixing, for application. GPCs ability to act as a carrier for bovine serum albumin (BSA) was also evaluated. Germanium (Ge) and BSA containing IGPCs were produced and reported to have working times between 26 and 44 min and setting times between 37 and 55 min; the extended handling properties being as a result of less Ge. The incorporation of BSA into the cement had no effect on the handling and mechanical properties, but the latter were found to have increased compression strength with the addition of Ge from between 27 and 37 MPa after 30 days maturation. Keywords: fracture fixation; distal radius fracture; germanium oxide; polyacrylic acid; injectable glass polyalkenoate cements; bovine serum albumin


2018 ◽  
Vol 7 (4.26) ◽  
pp. 185
Author(s):  
Nurul Nadiah Azmi ◽  
Jamaluddin Mahmud ◽  
Mohd Juzaila Abd Latif

Silicone rubber is widely used in the medical field, whereas agar is widely used as a medium to breed bacteria or to carry the active ingredient for a specific purpose. There are few synthetic skins available in the market that are made of silicone, such as Biobrane, Integra and Transcyte, to name a few. Meanwhile, in a previous study, agar is used to carry the active ingredients in turmeric to the wounded skin and expedite its recovery. However, up to date, there is no available skin substitute with the ability for carrying bioactive ingredient that would expedite wound healing and anti-bacterial properties. Hence, this study aims to synthesise a new biocomposite that could mimic skin mechanical properties with the future potential to carry bioactive ingredient via agar particles. The material constants for this newly developed agar slicone biocomposite are determined using Neo- Hookean, Mooney-Rivlin and Ogden models. This research consists of two main stages; which is the synthesis and the determination of the mechanical properties of agar silicone biocomposite, via experimental and numerical approach. The experimental approach involves testing the biocomposite under uniaxial tensile test, while the numerical approach involves curve fitting method using a Matlab programme. The calculated parameter for Neo-Hookean (C1) ranges from 52-57 kPa for all variances of agar silicone biocomposite. As for Mooney-Rivlin, the values are of 34-38 kPa and 47- 54 kPa for C1 and C2 re spectively. Ogden parameters (Ogden coefficient, µ and Ogden exponent, α) for agar silicone biocomposites are 48-54 kPa; 2.17-2.19 (µ;α). The material constants of agar silicone biocomposites lays within the range of human tissue and skin, as well as animal skin; thus proving that agar silicone biocomposite could deform nearly the same as skin. Therefore, it can be concluded that this study has significant contribution to better understand the mechanical properties of the newly developed agar silicone biocomposite. 


2006 ◽  
Vol 7 (11) ◽  
pp. 2961-2970 ◽  
Author(s):  
Michael F. Butler ◽  
Allan H. Clark ◽  
Sarah Adams

2016 ◽  
Vol 08 (05) ◽  
pp. 1650066 ◽  
Author(s):  
Serena de Gelidi ◽  
Gianluca Tozzi ◽  
Andrea Bucchi

Rubber-like materials as many soft tissues can be described as incompressible and hyper-elastic materials. Their comparable elastic behavior, up to a certain extent, has been exploited to develop and test experimental methodologies to be then applied to soft biological tissues such as aortic wall. Hence, theoretical and experimental simulation of aortic tissue, and more generally blood vessel tissue, has been often conducted using rubbers. Despite all the efforts in characterizing such materials, a clear and comprehensive testing procedure is still missing. In particular, the influence of pre-conditioning in the mechanical response of hyper-elastic materials has been often neglected. In this paper, the importance of pre-conditioning is demonstrated by: (i) exploring the effect of stretching frequency applied before the uniaxial tensile test; (ii) recognizing the role of specimen geometry and strain amplitude; (iii) verifying the impact of experimental data acquisition on finite element predictions. It was found that stress–strain relationship shows a statistical difference between some frequencies of pre-conditioning and its absence. Only certain pre-conditioning frequencies were able to generate repeatable experimental data for strip or dumb-bell shapes. This feature corresponds to a consistent reduction in the scatter of critical pressures obtained by numerical simulations.


2021 ◽  
Author(s):  
Basel A. Khader ◽  
Sean A. F. Peel ◽  
Mark R. Towler

Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 MPa, but set in under 2 min. Here, the authors design injectable GPCs (IGPCs) based on zinc-containing, Al-free silicate compositions containing GeO2, substituted for ZnO at 3% increments through the series. The setting reactions, injectability and mechanical properties of these GPCs were evaluated using both a hand-mix (h) technique, using a spatula for sample preparation and application and an injection (i) technique, using a 16-gauge needle, post mixing, for application. GPCs ability to act as a carrier for bovine serum albumin (BSA) was also evaluated. Germanium (Ge) and BSA containing IGPCs were produced and reported to have working times between 26 and 44 min and setting times between 37 and 55 min; the extended handling properties being as a result of less Ge. The incorporation of BSA into the cement had no effect on the handling and mechanical properties, but the latter were found to have increased compression strength with the addition of Ge from between 27 and 37 MPa after 30 days maturation. Keywords: fracture fixation; distal radius fracture; germanium oxide; polyacrylic acid; injectable glass polyalkenoate cements; bovine serum albumin


Open exposure to the extraordinary amount of the heat under the sun can causes the damage to the skin and lead to diseases. The analysis of the mechanical properties on cow skin which investigated by analyzing the uniaxial tensile test in order to produce the outcome based on the situation stated. Besides that, cow skin was selected in order to compare with the previous study on sheep skin. The aim of the study is to investigate the effect of varies temperature on mechanical properties of the animal skin. Experimental and numerical is part of the integration process of the data. Uniaxial tensile test was performed to measure the basic mechanical parameter of stress-stretch by according to the ASTM D2209-00 testing standard. Other than that, the hyperelastic constitutive model Arruda & Boyce (A&B) equation is simplified via numerical approach for finding the material parameter. A graph of Stress-Stretch (σ-λ) plotted for curve fit with the experimental data to obtain the mechanical properties of parameter. Overall, the samples applied with lanolin coating is more elastic even though it dried at 40oC compared to the sample sets without lanolin coating. With having the specific mechanical data of the skin by computational program and analysis it become more reliable by showing the real skin behavior to the variable.


Sign in / Sign up

Export Citation Format

Share Document