scholarly journals The Role of Pre-Conditioning Frequency in the Experimental Characterization of Hyper-Elastic Materials as Models for Soft Tissue Applications

2016 ◽  
Vol 08 (05) ◽  
pp. 1650066 ◽  
Author(s):  
Serena de Gelidi ◽  
Gianluca Tozzi ◽  
Andrea Bucchi

Rubber-like materials as many soft tissues can be described as incompressible and hyper-elastic materials. Their comparable elastic behavior, up to a certain extent, has been exploited to develop and test experimental methodologies to be then applied to soft biological tissues such as aortic wall. Hence, theoretical and experimental simulation of aortic tissue, and more generally blood vessel tissue, has been often conducted using rubbers. Despite all the efforts in characterizing such materials, a clear and comprehensive testing procedure is still missing. In particular, the influence of pre-conditioning in the mechanical response of hyper-elastic materials has been often neglected. In this paper, the importance of pre-conditioning is demonstrated by: (i) exploring the effect of stretching frequency applied before the uniaxial tensile test; (ii) recognizing the role of specimen geometry and strain amplitude; (iii) verifying the impact of experimental data acquisition on finite element predictions. It was found that stress–strain relationship shows a statistical difference between some frequencies of pre-conditioning and its absence. Only certain pre-conditioning frequencies were able to generate repeatable experimental data for strip or dumb-bell shapes. This feature corresponds to a consistent reduction in the scatter of critical pressures obtained by numerical simulations.

2012 ◽  
Vol 12 (03) ◽  
pp. 1250034 ◽  
Author(s):  
M. M. KHANI ◽  
H. KATOOZIAN ◽  
K. AZMA ◽  
I. NASEH ◽  
A. H. SALIMI

The heel-pad as a biological shock absorber has an important role in the initial contact phase of gait cycle dissipating the impact forces resulted in locomotion. An axisymmetric finite element model of human heel-pad has been generated and the heel-pad experimental data deduced from a published force-deflection graph of the same specimen (Iain R. Spears, Janice E. Miller-Young), Iterative identification task has been used to extract nonlinear material properties describing hyper-elastic behavior of heel-pad. The genetic algorithm was incorporated into estimation process using an interface program. Two parameters of hyper-elastic materials potential energy function represented by Mooney–Rivlin were determined by using the genetic algorithm technique to minimize the displacement error between the experimental data and the corresponding finite element results after a considerable number of iterations. The result can be used for design and construction of synthetic heel-pad and therapeutic foot wear as well as insoles, especially for diabetic patients.


2020 ◽  
Vol 899 ◽  
pp. 73-80
Author(s):  
Nur Nabila Mohd Nazali ◽  
Nur Ani Aniqah Anirad ◽  
Nor Fazli Adull Manan

This paper focuses on the characterized of the mechanical properties and hyper elastic behavior of lab made skin. Bovine Serum Albumin (BSA) combined with gelatin as a base. BSA is a plasma lead concentrations or heparin plasma which is separated from blood sample and it is not associated with significant changes in iron or hemoglobin concentrations. In general, the gelatin is widely used as the best material for skin substitution since it exhibits the characteristic of human skin. However, the lab made skin layer was made of non-halal type gelatin (Type B). The methodology process started by adding the BSA and using the type A gelatin to carry out the mechanical properties and hy-per elastic behavior of halal lab made skin layer. A uniaxial tensile test standard that being used in this study is ASTM D412. The raw data (Load-Extension) from computational was plotted on graph stress-strain. The numerical approach such as Mooney-Rivlin model and Yeoh’s model were selected to analyze a stress-stretch of composition gelatin and BSA. From the results Mooney-Rivlin model, the con-stant, C1 is in the range of (0.0187-0.0658) MPa and C2 is in the range of (0.0628-0.0737) MPa. Meanwhile the constant, CP for Yeoh model is in the range of (0.0748-0.0861) MPa. As a conclusion, the composition of gelatin and Bovine Serum Albumin is a best combina-tion as it increases the strength of the lab made skin layer. Therefore, the most suitable composition is 10 wt.% of gelatin and Bovine Serum Albumin.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


Tensile Testing, Second Edition is a comprehensive guide to the uniaxial tensile test and its use in determining the mechanical properties and behaviors of materials. The first six chapters cover the fundamentals of tensile testing, including the methodology, the equipment used, the effect of tensile loading on metals, the interpretation of data, and the role of tensile testing in design and manufacturing. The next six chapters deal with the testing of different classes of engineering materials, namely metals, plastics, elastomers, ceramics, and composites, and fabricated structures such as weldments and bolted and adhesively bonded joints. The book also includes three chapters on the nuances of tensile testing at extreme temperatures and strain rates and a reference section with data tables. For information on the print version, ISBN 978-0-87170-806-9, follow this link.


2019 ◽  
pp. 089270571986827 ◽  
Author(s):  
Nayan Pundhir ◽  
Sunny Zafar ◽  
Himanshu Pathak

The present work deals with the microwave-assisted compression moulding of high-density polyethylene (HDPE)-based composites. In the present work, 20 wt% of reinforcement in the form of kenaf and multi-walled carbon nanotube (MWCNT) was used to fabricate HDPE/kenaf and HDPE/MWCNT polymer composites. The mechanical characterizations of the microwave-processed composites were carried out in terms of uniaxial tensile test with different strain rate, multistep stress relaxation, flexural and impact test. The uniaxial tensile test revealed that the tensile modulus of microwave-processed four-layered HDPE/kenaf polymer composite was 35.2% higher than that of HDPE/MWCNT polymer composite. The HDPE/MWCNT polymer composite showed a minimum of 1.25 GPa and a maximum of 4.7 GPa of elastic modulus when tested at different strain rate. The impact energy absorbed by the HDPE/kenaf polymer composite (1.055 J) was 81.12% higher than the HDPE/MWCNT polymer composite (0.582 J).


Author(s):  
Jorge de Andres ◽  
Michael D. Jones ◽  
Catrin M. Davies

Abstract A new technique has recently been proposed to provide improved estimates of the creep contribution to the crack mouth opening displacements (CMOD) and displacement rates during creep crack growth (CCG) tests. This technique employs finite element analysis that incorporates material specific uniaxial tensile test data to simulate crack growth in an experimental test and can account for strain history and creep stress relaxation effects during CCG tests. In this work, this new methodology is applied to analyse the results of a CCG test performed on a relatively low constraint single edge notched tension, SEN(T), geometry. The proportions of the CMOD due to elasticity and plasticity are quantified, and compared to historic, standardised methods of estimating these values. The new method reduces the over estimation of the contribution of plasticity to the CMOD measurement. The impact of this analysis on CCG test results is discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Liliana Violeta Constantin ◽  
Dan Alexandru Iordache

Starting from the experimental data referring to the main parameters of the fracture surfaces of some 300-grade maraging steel reported by the classical work published in Nature 308, 721–722(1984), this work studied (a) the multifractal scaling by the main parameters of the slit islands of fracture surfaces produced by a uniaxial tensile loading and (b) the dependence of the impact energy to fracture and of the fractal dimensional increment on the temperature of the studied steels heat treatment, for the fracture surfaces produced by Charpy impact. The obtained results were analyzed, pointing out the spectral (size) distribution of the found slit islands in the frame of some specific clusters (fractal components of the multifractal scaling) of representative points of the logarithms of the slit islands areas and perimeters, respectively.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1885-1890 ◽  
Author(s):  
ZUOCHENG WANG ◽  
GUOTAO CUI ◽  
TAO SUN ◽  
WEIMIN GUO ◽  
XIULING ZHAO ◽  
...  

In our research, boron was added into the Nb -added high strength low alloy (HSLA) H -section steels. The contents of boron added were 4ppm, 8ppm and 11ppm, respectively. The mechanical properties of H -section steels with/without boron were examined by using uniaxial tensile test and Charpy impact test ( V -notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results indicate that boron gives a significant increase in impact toughness, especially in low temperature impact toughness, though it leads to an unremarkable increase in strength and plasticity. For instance, the absorbed energy at -40°C reaches up to 126J from 15J by 8ppm boron addition, and the ductile-brittle transition temperature declines by 20°C. It is shown that boron has a beneficial effect on grain refinement. The fracture mechanism is transited from cleavage fracture to dimple fracture due to boron addition.


Author(s):  
Xiaodong Zhang ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Xiaoxiao Wang ◽  
Huiwen Wang

The purpose of this study was to conduct laboratory test programs on how much vehicle-induced vibrations during early ages affected the tensile performance of Polyvinyl alcohol-engineering cementitious composites (PVA-ECC). A self-improved device was used to simulate the vehicle-induced vibrations, and after vibrating with the designed variables, both a uniaxial tensile test and a grey correlation analysis were performed. The results indicated that: the effects of vehicle-induced vibrations on the tensile performance of early age PVA-ECC were significant, and they generally tended to be negative in this investigation. In particular, for all of the vibrated PVA-ECC specimens, the most negative age when vibrated occurred during the period between the initial set and the final set. In this period, the effects of the vibration duration on the tensile performance of the PVA-ECC tended to be negative overall, but the impact trend and the degree varied for the corresponding lengths of duration and levels of frequency. The cracking strength was the most sensitive to the variables in this investigation, and then it followed the ultimate tensile strength and strain. The grey correlation analysis was applicable in analyzing the effects of vehicle-induced vibrations on the tensile performance of early age PVA-ECC.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
D. M. Prieto ◽  
R. Devesa-Rey ◽  
D. A. Rubinos ◽  
F. Díaz-Fierros ◽  
M. T. Barral

Natural geological conditions together with the impact of human activities could produce environmental problems due to high As concentrations. The aim of this study was to assess the role of epipsammic biofilm-sediment systems onto As (V) sorption and to evaluate the effect of the presence of equimolar P concentrations on As retention. A natural biofilm was grown on sediment samples in the laboratory, using river water as nutrient supplier. Sorption experiments with initial As concentrations 0, 5, 25, 50, 100, 250, and 500 μg L−1were performed. The average percentage of As sorbed was78.9±3.5and96.9±6.6% for the sediment and biofilm-sediment systems, respectively. Phosphate decreased by 25% the As sorption capactity in the sediment devoid of biofilm, whereas no significant effect was observed in the systems with biofilm. Freundlich, Sips, and Toth models were the best to describe experimental data. The maximum As sorption capacity of the sediment and biofilm-sediment systems was, respectively, 6.6 and 6.8 μg g−1and 4.5 and 7.8 μg g−1in the presence of P. In conclusion, epipsammic biofilms play an important role in the environmental quality of river systems, increasing As retention by the system, especially in environments where both As and P occur simultaneously.


Sign in / Sign up

Export Citation Format

Share Document