Ferromagnetic ZnO-TiO2 Core-Shell Nanowire PhotoCatalyst with High Efficiency and Recyclability

2011 ◽  
Vol 90-93 ◽  
pp. 1702-1705
Author(s):  
Xi Zhang ◽  
Gang Xiang

We demonstrate the design of the recyclable photocatalyst based on ferromagnetic (FM) ZnO- TiO2 core-shell nanowires (NWs). Since the band gaps and band edge energies of bulk ZnO and anatase TiO2 are equal to each other within about 45mV, TiO2 and ZnO can form an p-p+ heterojunction free of band discontinuities and with a built-in potential. The resulting radial field will increase hole density in the TiO2 layer while reduce hole concentration at the interface between the core and the shell, which in turn will decrease the rate of recombination in the photocatalytic TiO2, and hence increase the efficiency of photocatalyst. On the other hand, the NWs with FM cores can be easily collected and refreshed using solenoid and suitable for the recyclable usage of the NW catalyst

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Guangfeng Wu ◽  
Yue Tao ◽  
Hong Kang ◽  
Huixuan Zhang

AbstractThe stability of core-shell particles (CSPs) with butyl acrylate (BA) as the core and methyl methacrylate (MMA)/glycidyl methacrylate (GMA) mixture in various compositions as the shell was investigated by turbidity measurements. The experiments demonstrate that lower amount addition of GMA could not improve the latex stability. When the amount of GMA exceeded 2% of the total reactants, it began to improve the stability of the latex. With the increasing content of GMA, the latex became more and more stable. On the other hand, experimental data also show that the stability was improved by increasing the concentration of sodium dodecyl sulfate (SDS).


2020 ◽  
Vol 34 (25) ◽  
pp. 2050214 ◽  
Author(s):  
Chang Liu ◽  
Enling Li ◽  
Tuo Peng ◽  
Kaifei Bai ◽  
Yanpeng Zheng ◽  
...  

In this paper, electronic and optical properties of GaN/InN core/shell nanowires (CSNWs) have been theoretically investigated through the first principles calculations. The binding energy of In and N atoms on surface of six crystal planes along the [Formula: see text]-axis of GaN nanowires are all negative, which indicate that In and N atoms can be effectively deposited on the surface of GaN nanowires and preparing GaN/InN CSNWs is feasible theoretically. Calculation results of electronic properties indicate that the core/shell ratio and diameter of GaN/InN CSNWs have significant effect on the band structure, bandgap can be effectively adjusted when keeping the number of GaN layers unchanged and changing the number of InN layers. Moreover, with the increase in the number of InN layers, the absorption spectrum of GaN/InN CSNW has significant redshift and few weak absorption peaks appear in the visible light region.


2016 ◽  
Vol 120 (49) ◽  
pp. 28169-28175 ◽  
Author(s):  
Elisabeth Pratidhina ◽  
Sunghyun Kim ◽  
K. J. Chang

NANO ◽  
2014 ◽  
Vol 09 (04) ◽  
pp. 1450051
Author(s):  
ASHWANI VERMA ◽  
BAHNIMAN GHOSH ◽  
AKSHAY KUMAR SALIMATH

In this paper, we have used semiclassical Monte Carlo method to show the dependence of spin relaxation length in III–V compound semiconductor core–shell nanowires on different parameters such as lateral electric field, temperature and core dimensions. We have reported the simulation results for electric field in the range of 0.5–10 kV/cm, temperature in the range of 77–300 K and core length ranging from 2 nm to 8 nm. The spin relaxation mechanisms used in III–V compound semiconductor core–shell nanowire are D'yakonov–Perel (DP) relaxation and Elliott–Yafet (EY) relaxation. Depending upon the choice of materials for core and shell, nanowire forms two types of band structures. We have used InSb – GaSb core–shell nanowire and InSb – GaAs core–shell nanowire and nanowire formed by swapping the core and shell materials to show all the results.


2015 ◽  
Vol 63 (1) ◽  
pp. 14-28 ◽  
Author(s):  
Tereza Hájková ◽  
Andrea Kalendova

Purpose – This paper aims to synthesise anticorrosion pigments containing molybdenum for paints intended for corrosion protection of metals. Design/methodology/approach – The anticorrosion pigments were prepared by high-temperature solid-state synthesis from the appropriate oxides, carbonates and calcium metasilicate. Stoichiometric molybdates and core-shell molybdates with a non-isometric particle shape containing Ca, Sr, Zn, Mg and Fe were synthesised. The pigments were examined by X-ray diffraction analysis and scanning electron microscopy. Paints based on an epoxy resin and containing the substances at a pigment volume concentration of 10 volume per cent were prepared. The paints were subjected to physico-mechanical tests and to tests in corrosion atmospheres. The corrosion test results were compared to those of the paint with a commercial pigment, which is used in many industrial applications. Findings – The molybdate structure of each pigment prepared was elucidated. The core-shell molybdates exhibit a non-isometric particle shape. The pigments prepared were found to impart a very good anticorrosion efficiency to the paints. A high anticorrosion efficiency was found with the pigments Fe2(MoO4)3 and Fe2(MoO4)3/CaSiO3 and with Mg and Zn molybdates. Practical implications – The pigments can be used for the formulation of paints intended for the corrosion protection of metals. The pigments also improve the paints’ physical properties. Originality/value – The use of the pigments in anticorrosion paints for the protection of metals is new. The benefits include the use and the procedure of synthesis of the anticorrosion pigments which are free from heavy metals and are acceptable from the aspect of environmental protection. Moreover, the core-shell molybdates, whose high efficiency is comparable to that of the stoichiometric molybdates, have lower molybdenum contents.


1997 ◽  
Vol 501 ◽  
Author(s):  
K. Rajan ◽  
P. Sajgalik ◽  
R. K. Singh ◽  
D. Kumar ◽  
J. Fitz-Gerald

ABSTRACTIn this paper we present an overview of two very different approaches to the synthesis of composite particulates which result in a “core-shell” type structure. It is shown that both these synthesis approaches result in very characteristic interface structures between the outer coating and the host particles. One synthesis strategy is to use laser ablation deposition on individual particles and the other is to “coat” particles ‘in-situ’ by taking advantage of solid state diffusional transformations. Examination of the interface between the outer shell and the core of the particle shows that textured or toptactical growth occurs and it is suggested that this unique crystallographic characteristic may be responsible for the properties offered by these engineered particulates. The applications of such engineered particulates is also discussed.


2006 ◽  
Vol 958 ◽  
Author(s):  
Y. Yano ◽  
T. Nakajima ◽  
K. Shintani

ABSTRACTThe mechanical properties of Si/Ge core-shell nanowires under a unixial tension are studied using molecular-dynamics simulation. The effects of anisotropy and the fraction of the core atoms on the Young's moduli of the core-shell nanowires are examined. The values of their Young's moduli deviate from those calculated using Vegard's law. Single atom chains are formed at the final stages of elongation of the nanowires.


2020 ◽  
Vol 22 (18) ◽  
pp. 6157-6169 ◽  
Author(s):  
Xinming Wang ◽  
Zemin Feng ◽  
Boxin Xiao ◽  
Jingxiang Zhao ◽  
Huiyuan Ma ◽  
...  

The core–shell structure of the Fe1.89Mo4.11O7/FeS2@C hybrid material exhibits high-efficiency electrocatalytic NRR activity and stability under ambient conditions.


2004 ◽  
Vol 11 (04n05) ◽  
pp. 373-378 ◽  
Author(s):  
BYOUNGTAE PARK ◽  
YONGHWAN RYU ◽  
KIJUNG YONG

A simple, direct synthesis method was used to grow the core-shell SiC - SiOx nanowires by heating the NiO catalyzed silicon substrate. The carbothermal reduction of WO3 by C provided a reductive environment to synthesize the crystalline SiC nanowires covered with the SiO x sheath in the growth temperature of 1000–1100°C. After hydrofluoric acid (HF) etching, the cubic β- SiC nanowires were extracted from the core-shell nanowires in large quantities. A solid-liquid-solid (SLS) mechanism was proposed for the growth of the core-shell SiC - SiO x nanowires.


Sign in / Sign up

Export Citation Format

Share Document