Numerical Modeling and Parametric Analysis of Multiplanar CHS KT-Joints with K-Plane Overlap and Out-of-Plane Gap

2011 ◽  
Vol 94-96 ◽  
pp. 575-582
Author(s):  
Jian Dong Sun ◽  
Jun Li Lv ◽  
Tao Du ◽  
Yang Xian Li

A finite element model simulating the experiment on multiplanar unstiffened CHS KT joints with K-plane overlapped and out-of-plane not (KT-IPOv joints), with the background of Suzhou International Convention & Exhibition Center, was advanced and validated by comparing failure mode and the ultimate capacity with experimental results, which is shown to be in good agreement with the test result. Using this model, the effect of non-dimensional parameters on ultimate capacity of KT-IPOv joints were studied, and resistance comparison between multiplanar KT-IPOv joints and uniplanar overlapped K-joints was carried out. The results of FE parametric Analysis conclude that multiplanar parameter ζ t, τT and βT have not significant influence on the ultimate strength; the effect of non-dimensional parameter βK, τK, γ, Ov on the resistance of multiplanar KT-IPOv joints has the same as that of uniplanar overlapped K-joints; the strength of multiplanar KT-IPOv joints have been not significantly influenced by the configuration with the brace inside T-plane which it is not subjected to force; it is suitable and feasiable that ultimate capacities of KT-IPOv joints predicted by formula of uniplanar K-joints.

Author(s):  
John W. Chew ◽  
Robert J. Snell

The problem of radial inflow between two plane co-rotating discs with the angular velocity of the fluid at inlet equal to that of the discs is considered. An integral solution technique for turbulent flow, based on that of von Karman (1921), is described. Solutions are shown to be in good agreement with most of the available experimental data. For incompressible flow the pressure drop coefficient is a function of just two non-dimensional parameters; the radius ratio for the cavity and a throughflow parameter. For air flows compressibility can be important and an additional non-dimensional parameter is needed. Results for a wide range of conditions are presented graphically. These show the sensitivity of the pressure coefficient to the governing parameters and provide a quick method for estimating the pressure drop.


Author(s):  
Kyriakos Karlos ◽  
Aristomenis Tsantilis ◽  
Thanasis Triantafillou

Taking into consideration the seismic vulnerability of older buildings and the increasing need for reducing their carbon footprint and energy consumption, the application of an innovative system is investigated; the system is based on the use of textile reinforced mortars (TRM) and thermal insulation as a means of combined seismic and energy retrofitting of existing masonry walls. Medium scale tests were carried out on masonry walls subjected to out-of-plane cyclic loading. The following parameters were investigated experimentally: one-sided versus two-sided insulation and/or TRM jacketing, placement of the TRM outside the insulation or in a sandwich form (over and under the insulation), as well as the displacement amplitude of the loading cycles. A simple analytical method is developed and is found in good agreement with test results. Additionally, numerical modeling is carried out and is also found in good agreement with test results. From the results obtained in this study the authors believe that TRM jacketing may be combined effectively with thermal insulation, increasing the overall strength and energy efficiency of the masonry panels in buildings.


2020 ◽  
Vol 4 (4) ◽  
pp. 189
Author(s):  
Kyriakos Karlos ◽  
Aristomenis Tsantilis ◽  
Thanasis Triantafillou

Taking into consideration the seismic vulnerability of older buildings and the increasing need for reducing their carbon footprint and energy consumption, the application of an innovative system is investigated; the system is based on the use of textile-reinforced mortar (TRM) and thermal insulation as a means of combined seismic and energy retrofitting of existing masonry walls. Medium-scale tests were carried out on masonry walls subjected to out-of-plane cyclic loading. The following parameters were investigated experimentally: placement of the TRM in a sandwich form (over and under the insulation) or outside the insulation, one-sided or two-sided TRM jacketing and/or insulation, and the displacement amplitude of the loading cycles. A simple analytical method is developed and found in good agreement with the test results. Additionally, numerical modeling is carried out and also found in good agreement with the test results. From the results obtained in this study, the authors believe that TRM jacketing may be combined effectively with thermal insulation, increasing the overall strength and energy efficiency of the masonry panels in buildings.


Author(s):  
Xiaohu Zhang ◽  
Qin Sun

For the parallel solution of structural finite element problem with non-matching multi-domains, a nonmatched finite element tearing and interconnectiong (FETI) parallel algorithm is proposed based on L-FETI method by introducing the frame node force and modifying the frame displacement compatibility condition and the load balance condition. Based on the radial basis functions (RBF) interpolation technique, the data transfer of internal force and displacement between the neighboring subdomains has a unified matrix format and is easy to program by introducing a local coordinate system into the non-matching interfaces. Taking the finite element model for plate bending problem with four subdomains as an example, two kinds of multi-domains models, matching and non-matching meshes, are constructed respectively. The numerical results show that the out-of-plane deflection of the same nodes on the domain decomposition frame is in a good agreement, which shows that the present method is reasonable and effective for solving the parallel non-matching multi-domains model.


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


Author(s):  
P. Thibaux ◽  
J. Van Wittenberghe ◽  
E. Van Pottelberg ◽  
M. Van Poucke ◽  
P. De Baets ◽  
...  

Tubular joints are intensively used in off-shore structures for shallow waters. Depending on the sea conditions and the type of structure, the design can be fatigue driven. This is particularly the case for off-shore wind turbines, where turbulences are generating a fatigue loading. Any improvement of the fatigue performance of the tubular joint would be beneficial to reduce the weight and the cost of the structure. To assess efficiently the fatigue resistance of the tubular joint, a testing method has been developed based on the resonance principle. The complete circumference of the welded joint can be loaded, successively in the in-plane and out-of-plane modes at a frequency close to 20Hz. Finite element computations were used to investigate the feasibility of the concept. Then, an X-node was made and successfully tested to investigate the stress distribution along the weld. The experimental results were compared with finite element computations, giving a good agreement.


Author(s):  
M. Bahrami ◽  
M. M. Yovanovich ◽  
J. R. Culham

The contact of rough spheres is of high interest in many tribological, thermal, and electrical fundamental analyses. Implementing the existing models is complex and requires iterative numerical solutions. In this paper a new model is presented and a general pressure distribution is proposed that encompasses the entire range of spherical rough contacts including the Hertzian limit. It is shown that the non-dimensional maximum contact pressure is the key parameter that controls the solution. Compact expressions are proposed for calculating the pressure distribution, radius of the contact area, elastic bulk deformation, and the compliance as functions of the governing non-dimensional parameters. The present model shows the same trends as those of the Greenwood and Tripp model. Correlations proposed for the contact radius and the compliance are compared with experimental data collected by others and good agreement is observed.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hamdi Alper Özyiğit ◽  
Mehmet Yetmez ◽  
Utku Uzun

As there is a gap in literature about out-of-plane vibrations of curved and variable cross-sectioned beams, the aim of this study is to analyze the free out-of-plane vibrations of curved beams which are symmetrically and nonsymmetrically tapered. Out-of-plane free vibration of curved uniform and tapered beams with additional mass is also investigated. Finite element method is used for all analyses. Curvature type is assumed to be circular. For the different boundary conditions, natural frequencies of both symmetrical and unsymmetrical tapered beams are given together with that of uniform tapered beam. Bending, torsional, and rotary inertia effects are considered with respect to no-shear effect. Variations of natural frequencies with additional mass and the mass location are examined. Results are given in tabular form. It is concluded that (i) for the uniform tapered beam there is a good agreement between the results of this study and that of literature and (ii) for the symmetrical curved tapered beam there is also a good agreement between the results of this study and that of a finite element model by using MSC.Marc. Results of out-of-plane free vibration of symmetrically tapered beams for specified boundary conditions are addressed.


1991 ◽  
Vol 238 ◽  
Author(s):  
Y. Huai ◽  
R. W. Cochrane ◽  
Y. Shi ◽  
H. E. Fischer ◽  
M. Sutton

ABSTRACTThe structures of equal-thickness Co/Re multilayer films and several Co/Re bilayer films have been investigated by X-ray diffraction at low and high angles. Analysis of low-angle reflectivity data from bilayer films indicates that interfacial intermixing is limited to three monolayers and that the two interfacial configurations are different. The high-angle X-ray diffraction data show that multilayer films have coherent interfaces and a highly textured structure with hep [002] orientations normal to the film plane for periods 21 Å ≤ Λ ≤220 Å. Detailed structures have been determined by fitting the X-ray spectra to calculated ones using a trapezoidal model. The results indicate that samples with 42 Å≤ Λ ≤220 Å have relatively sharp interfaces, in good agreement with the bilayer results. In addition, an out-of-plane expansion of the Co (002) layer is observed in samples with large Λ and results from structural disorder leading to a reduced atomic density. For Λ <21 Å the interfaces arise from the rougher surfaces of the deposited layers.


Sign in / Sign up

Export Citation Format

Share Document