An Explorative Study of Fabrication of Al-Based Matrix Diamond Grinding Wheels by Vacuum Evaporative Pattern Casting

2014 ◽  
Vol 1017 ◽  
pp. 249-254
Author(s):  
Qiu Lian Dai ◽  
Fang Yi You ◽  
Can Bin Luo

The possibility of using the new processing technique of vacuum evaporative pattern casting (V-EPC) process to fabricate the Al-Si based bonded diamond grinding wheels was explored in this paper. Distribution of diamond grits in the diamond/EPS composite pattern and in the grinding layer of the cast of the grinding wheel were analyzed. Microstructures and mechanical properties of the metal bonds and diamond composites fabricated by V-EPC process were studied. It is confirmed that thermal damage of the diamond grits did not occur. Strong bonding between metal bond and diamond grits can be produced. However, the uniformity of the distribution of diamond grits in the metal matrix should be further improved. Also, further hardening on the metal bond is necessity by trying other kinds of aluminum alloys.

2010 ◽  
Vol 126-128 ◽  
pp. 690-695
Author(s):  
David Lee Butler

Surface measurement using three-dimensional stylus instruments is a relatively new technique that offers numerous advantages over more traditional profilometry methods. The information generated is, unlike profile measurement, less subjective and more statistical providing additional insight into the surface structure. One application of surface measurement that has encountered problems when using the profilometry method is that of grinding wheel characterisation. The wheel surface texture (topography) and the conditions under which it is generated have a profound effect upon the grinding performance as characterised by the grinding forces, power consumption, temperature, and surface integrity of components. A detailed knowledge of the nature of the topography of the grinding wheel would provide further insight into surface interactions between the wheel and workpiece as well as enabling improved control of the grinding process in general. In this paper four diamond grinding wheels of 91 and 181 micron grit size were subjected to differing dressing conditions to produce varying final wheel topographies. Three-dimensional surface measurement techniques were employed to quantitatively characterise the topographic change and provide an aerial estimation of the number of cutting grains. The results demonstrate that the techniques can distinguish between a worn and dressed wheel. In addition, the parametric values generated from the various surfaces can aid the user in determining when re-dressing is required.


2010 ◽  
Vol 42 ◽  
pp. 313-316 ◽  
Author(s):  
Jin Xue Xue ◽  
Bo Zhao

In order to investigate the influence of dressing methods on grinding temperature, two kinds of diamond grinding wheels dressed by traditional dressing(TD) and elliptic ultrasonic vibration dressing(ED) respectively were used to grind the same nano-ceramic material. Through grinding experiments, the comparative analysis of the grinding temperature was conducted. The results show that diamond grinding wheel dressed by elliptical ultrasonic vibration method can decrease the grinding temperature.


2005 ◽  
Vol 291-292 ◽  
pp. 213-220 ◽  
Author(s):  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
Hitoshi Ohmori ◽  
...  

In V-groove ELID grinding process, to achieve optimal grinding performance and satisfactory surface quality and profile accuracy, metal bonded diamond grinding wheels need to be carefully sharpened. In this paper, we applied the proposed new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing to sharpen the edge of large grinding wheels. The minimum wheel tip radiuses of 6.3 and 8.5µm were achieved for the #4000 and #20000 grinding wheels. The truing mechanisms and sharpening performance are also discussed.


2011 ◽  
Vol 415-417 ◽  
pp. 594-597 ◽  
Author(s):  
Hua Xu ◽  
Cui Jiao Liao ◽  
Qing Ming Weng

To improve the self-sharpening ability and increase clearance for debris of metal bonded diamond grinding wheel, the porosity structure is applied to the diamond grinding wheel in this paper. By selecting different inducers diamond composites are burned under appropriate agglomeration condition. The experiment results indicate that diamond composites obtained through two certain inducers can meet both the demand of pore-creating and intensity, so can be used to make wheels. This conclusion lays a foundation for further study.


Author(s):  
Jan Gaebler ◽  
Markus Höfer ◽  
Markus Armgardt ◽  
Sven Pleger ◽  
Lothar Schäfer

Rough, microcrystalline CVD diamond layers are under research for many years for grinding applications. This contribution will present an overview about the results, both for film development and for application tests. The crystallite protrusions of microcrystalline CVD diamond layers act as micro cutting edges. Thus, the CVD diamond film forms a grinding layer on tools for abrasive machining, like grinding wheels or abrasive pencils (burrs, points). Such grinding layers have significant advantages compared to conventional diamond grinding layers, which are formed by bonding of diamond grains onto the tool base body. The development comprises CVD diamond layers that have been deposited on silicon nitride and silicon carbide tool base bodies with diameters up to 290 mm to form grinding wheels. For the preparation of the diamond layers our unique large-scale hot-filament CVD reactor with a coating area of 1000 mm × 500 mm was used which is already industrialized for the production of diamond electrodes, face seals, and bearings, respectively. The process was adjusted to achieve film thicknesses of 20 µm with tolerances below ±1 µm over the full grinding wheel area. The height of the crystallite protrusions was up to 4 µm; this protrusion corresponds to a grit size of D 12 for conventional bonded diamond grinding layers. The grinding wheels achieved a much better workpiece roughness in the machining of glass, alumina, and cermets. It is assumed that this is due to the number of protrusions, which is by factor of 2 to 7 higher compared to bonded grinding layers, depending on the grit size. Additionally the CVD diamond grinding wheels showed a strongly reduced wear rate. It was 10 to 80 times lower compared to conventional bonded diamond grinding layers. This improvement is due to the much higher number of diamond micro cutting edges and the larger diamond volume that can withstand the wear for a longer time. Furthermore a process technique was developed to regenerate worn CVD diamond layers. During machining the diamond crystallite tips are flattened. It was shown that a short epitaxial-like CVD process is able to recreate the crystallite tips without a significant increase of crystallite size. In such a way the CVD grinding tool can be re-sharpened and re-used. Grinding tests have shown that the machining performance is the same as for newly coated CVD grinding layers. The contribution will also present the development of micro abrasive pencils with CVD diamond coating. Microcrystalline CVD diamond layers have been deposited on cemented carbide tool base bodies with cylindrical tip shape. Due to the ability of the CVD process to coat complex substrate geometries the tools have been coated very uniformly. The abrasive pencils were tested and showed low work piece roughness and very long tool life times. The smallest abrasive pencil that was developed and tested successfully had a diameter of 0.05 mm. The presentation will be complemented by results of the development of honing tools.


2005 ◽  
Vol 291-292 ◽  
pp. 207-212 ◽  
Author(s):  
Hitoshi Ohmori ◽  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
...  

Metal bonded diamond grinding wheels are widely used in the grinding process, especial in ELID grinding. However, truing is difficult owing to the high toughness of metal bond materials and high hardness of diamond abrasives. To realize high precision and high-efficiency truing, we propose a new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing in this paper. The process principle and fundamental experimental results are introduced, and the truing performance is discussed. Research results show that the proposed new method is effective for truing metal bonded diamond grinding wheels.


2011 ◽  
Vol 299-300 ◽  
pp. 1060-1063 ◽  
Author(s):  
Y.X. Yao ◽  
Jin Guang Du ◽  
Jian Guang Li ◽  
H. Zhao

Mill-grinding experiments were carried out on SiCp/Al to investigate effects of mill-grinding parameters and grinding wheel parameters on machined surface roughness in this paper. The machined surface topography was also analyzed. Experimental results show that surface roughness increases with increasing feed rate and the depth of the mill-grinding. The effect of mill-grinding speed on surface roughness is low. The machined surface reveals many defects. The fine grit diamond grinding wheel can reduce the surface roughness and decrease the machined surface defect. Compared to the vitrified bonded diamond and electroplated diamond grinding wheels used in the experiment, the resin-based diamond grinding wheel produces a better surface.


Sign in / Sign up

Export Citation Format

Share Document