Development on Micro Precision Truing Method of ELID-Grinding Wheel (2nd Report: Application to Edge Sharpening of Large Wheel)

2005 ◽  
Vol 291-292 ◽  
pp. 213-220 ◽  
Author(s):  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
Hitoshi Ohmori ◽  
...  

In V-groove ELID grinding process, to achieve optimal grinding performance and satisfactory surface quality and profile accuracy, metal bonded diamond grinding wheels need to be carefully sharpened. In this paper, we applied the proposed new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing to sharpen the edge of large grinding wheels. The minimum wheel tip radiuses of 6.3 and 8.5µm were achieved for the #4000 and #20000 grinding wheels. The truing mechanisms and sharpening performance are also discussed.

2005 ◽  
Vol 291-292 ◽  
pp. 207-212 ◽  
Author(s):  
Hitoshi Ohmori ◽  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
...  

Metal bonded diamond grinding wheels are widely used in the grinding process, especial in ELID grinding. However, truing is difficult owing to the high toughness of metal bond materials and high hardness of diamond abrasives. To realize high precision and high-efficiency truing, we propose a new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing in this paper. The process principle and fundamental experimental results are introduced, and the truing performance is discussed. Research results show that the proposed new method is effective for truing metal bonded diamond grinding wheels.


Author(s):  
Taghi Tawakoli ◽  
Abdolreza Rasifard ◽  
Alireza Vesali

The efficiency of the grinding process highly depends on the coolant lubricant used. In grinding with CBN grinding wheels grinding oils are used increasingly. In the last decade new grinding oils based on different oil types are brought into the market, whose effect on the CBN grinding wheels performance until now not sufficiently been investigated. The Institute of Grinding and Precision Technology (KSF) investigated the influence of four different grinding oils on the performance of vitrified CBN grinding while grinding of 100Cr6 (M.-No. 1.3505), which is a heat-treatable steel with a very good grindability, and Nimonic A80, which is a difficult to grind heat-resistance superalloy. The obtained results show that the performance of the vitrified CBN grinding wheels—while using grinding oil as coolant lubricant—regarding the quality of the work piece surface, the grinding forces as well as the wear of the grinding wheel, highly depend on the viscosity of the grinding oil. Moreover, the results show that the surface quality and the grinding forces while using different grinding oils depend significantly on the work piece material.


10.14311/1598 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Ondrej Jusko

This paper focuses on the influence of various types of abrasive grains on cutting properties during the grinding process for bearing steel. In this experiment, not only conventional super-hard abrasive materials but also a new type of abrasive material were employed in grinding wheels. The measurement results were compared, and an evaluation was made of the cutting properties of the new abrasive material. The options were then evaluated for their practical applicability. The measurement results indicated that a grinding wheel with Abral and SG grains is the most suitable for grinding hardened bearing steel in order to achieve the best roughness and geometrical accuracy.


2019 ◽  
Vol 9 (23) ◽  
pp. 5079 ◽  
Author(s):  
Zongmin Liu ◽  
Qian Tang ◽  
Ning Liu ◽  
Pinghua Liang ◽  
Wei Liu

The profile accuracy of screw rotors plays a vital role in stabilizing the meshing operation between mated rotors. Such stability can minimize the vibration and noise, as well as improve the sealing performance and wear resistance. This is the main reason why form grinding is extensively applied as a finishing process to maintain high screw rotor profile accuracy. Since the installation parameters for form grinding wheels affect both the grinding wheel profile accuracy and grinding performance, it is essential to obtain reasonable installation parameters to guarantee the high precision and good grinding performance of form grinding wheels. In this paper, a novel optimization design method for form grinding wheels for screw rotors has been proposed. For the first time, the relationship between the grinding wheel installation parameters and profile accuracy is established to evaluate the grinding performance. A parameterized program has been designed based on space engagement theory. The characteristics of the contact line and profile features of form grinding wheels under different installation parameters have been investigated. Then, the proposed method was employed to select the correct range of installation parameters. To validate the proposed method, a set of experiments, including the manufacture and measurement of several screw rotors, was carried out. The results reveal that the precision of the screw profile is significantly improved compared with the empirical method, thus showing the effectiveness of the proposed method.


Author(s):  
P. Suya Prem Anand ◽  
N. Arunachalam ◽  
L. Vijayaraghavan

Advanced ceramic materials like sintered and presintered zirconia are frequently used in biomedical applications, where minimum quantity lubrication (MQL) assisted grinding is required to achieve a good surface finish instead of conventional flood coolant. However, insufficient cooling and wheel clogging are the major problems that exist in the MQL grinding process, which depends upon the type of work piece material and the grinding wheel being used. The present study is to determine the performance of the grinding wheels on presintered zirconia under MQL conditions in terms of grinding forces, specific energy, surface integrity, and wheel wear. Experiments are conducted with two different types of grinding wheels as silicon carbide (SiC) and diamond grinding wheels under the same condition. The results indicated that the diamond wheel provided a better surface finish and reduced tangential force under MQL condition, compared to the conventional SIC wheel. This was due to the reduction of wheel loading in the diamond grinding wheel. The specific energy of diamond grinding wheel was reduced with higher material removal rate compared to the conventional SiC wheel. The ground surfaces generated by the diamond grinding wheel showed fine grinding marks with better surface finish. The percentage of G-ratio calculated for the diamond wheel was higher than the SiC wheel by 77%. This was due to the sliding of the grains and less wheel loading in the diamond wheel. The cost difference between the corresponding wheels was discussed to improve the productivity of the grinding process.


2016 ◽  
Vol 1136 ◽  
pp. 71-77
Author(s):  
Bahman Azarhoushang ◽  
Rolf Rinderknecht ◽  
Alireza Vesali ◽  
Juergen Struss

The loading of the grinding wheel and adhesion of the workpiece material to the cutting edges of the grinding tool are among the main reasons which limit the process efficiency when grinding ductile materials. The micro topography of the grinding tool changes drastically as a result of loading. Higher grinding forces and temperatures, poorer surface quality and process accuracy are the consequences of the adhesion of the workpiece material to the grinding tool surface. A novel and promising technique to reduce the possibility of loading and adhesion in the grinding process is the infiltrating of the grinding tool. This study describes the results of infiltration of vitrified bonded conventional grinding wheels with graphite in the surface grinding process. The effects of infiltration have been studied for the first time on various grinding wheels with different grain materials, grit sizes, porosity and hardness. Two different types of steel which are very popular in the automobile industry, 100Cr6 and 16MnCr5, were chosen as the workpiece material by the surface grinding experiments. The selected cutting parameters cover a wide range of the practical surface grinding processes which are utilized generally in the industry. It has been experimentally shown that the type of infiltration plays an important role in reducing the loading of the wheel. Better surface quality and longer dressing intervals are the main results of the infiltration of the grinding tools.


2021 ◽  
Vol 15 (1) ◽  
pp. 49-56
Author(s):  
Satoshi Kashimura ◽  
Katsufumi Inazawa ◽  
Hitoshi Ohmori ◽  
Nobuhide Itoh ◽  
◽  
...  

The development of grinding wheels that are capable of improving the grinding accuracy and the finished surface roughness via the grinding process is increasingly sought in industries. The refinement of grinding wheels comprising abrasive grains is an effective means of improving the ground surface quality. The general methods used for fabricating grinding wheels tend to facilitate the aggregation of fine abrasive grains, resulting in poor abrasive distribution. Therefore, we focused on the electro-spinning mode of Patterning with Electrostatically Injected Droplet (PELID), which is capable of forming micro resin fibers. Subsequently, we attempted to fabricate fibrous grinding wheels containing abrasive grains by using the twin nozzle PELID technique that applies this mode. We confirmed through experiments that resin fibers containing abrasive grains can be manufactured efficiently using PELID and succeeded in manufacturing fibrous grinding wheels containing abrasive grains.


2010 ◽  
Vol 126-128 ◽  
pp. 690-695
Author(s):  
David Lee Butler

Surface measurement using three-dimensional stylus instruments is a relatively new technique that offers numerous advantages over more traditional profilometry methods. The information generated is, unlike profile measurement, less subjective and more statistical providing additional insight into the surface structure. One application of surface measurement that has encountered problems when using the profilometry method is that of grinding wheel characterisation. The wheel surface texture (topography) and the conditions under which it is generated have a profound effect upon the grinding performance as characterised by the grinding forces, power consumption, temperature, and surface integrity of components. A detailed knowledge of the nature of the topography of the grinding wheel would provide further insight into surface interactions between the wheel and workpiece as well as enabling improved control of the grinding process in general. In this paper four diamond grinding wheels of 91 and 181 micron grit size were subjected to differing dressing conditions to produce varying final wheel topographies. Three-dimensional surface measurement techniques were employed to quantitatively characterise the topographic change and provide an aerial estimation of the number of cutting grains. The results demonstrate that the techniques can distinguish between a worn and dressed wheel. In addition, the parametric values generated from the various surfaces can aid the user in determining when re-dressing is required.


2006 ◽  
Vol 304-305 ◽  
pp. 29-32 ◽  
Author(s):  
Hang Gao ◽  
Y.G. Zheng ◽  
W.G. Liu ◽  
Jian Hui Li

Manufacturing of vitrified bond CBN wheels for internal precision grinding of the air-conditioner compressor piston hole is still big challenge to all of the domestic manufacturers. Recently, by choosing pre-melting mixed CBN abrasives and a proper sintering process, a cost-effective method was conceived to produce grinding wheels of comparative quality. The grinding performance of wheels was evaluated with a series of internal precision grinding of compressor piston hole. Experimental results show that the vitrified bond CBN grinding wheel produced by this method has better grinding performance, and can be substitute to the same type of grinding wheels imported. But the manufacturing cost is only 60% of the wheel imported according to estimation.


Sign in / Sign up

Export Citation Format

Share Document