Force Requirements in Shear Cutting of Metal-Polymer-Metal Composites

2014 ◽  
Vol 1018 ◽  
pp. 137-144 ◽  
Author(s):  
David Übelacker ◽  
Johannes Hohmann ◽  
Peter Groche

New approaches in lightweight design require the use of multi materials like metalpolymermetal composites. Composite materials, especially so-called sandwich panels, offer the possibility to combine properties of different materials synergistically. Shear cutting is one of the commonly used manufacturing processes. However, conventional shear cutting of sandwich panels leads to characteristic types of failure, such as high bending of the facings, delamination effects, burr formation and an undefined cracking of the core material. In the present research, the cutting force requirement and the failure progress for lubricant free shear cutting of metal-polymer-metal composites is studied. Two thermoplastic polymers, an aluminum sheet and an unalloyed steel sheet are combined in order to create different composite materials. Furthermore, the composite materials are cut stepwise to examine the different stages of a cutting process in detail.

2015 ◽  
Vol 825-826 ◽  
pp. 433-440 ◽  
Author(s):  
Philipp Stein ◽  
David Übelacker ◽  
Dirk Holke ◽  
Peter Groche

Continually increasing exhaust emission standards for automobiles and an increasing environmental awareness push design engineers to develop new constructive and material concepts. So-called sandwich panels, consisting of stiff facings and light-weight cores, offer the possibility to combine properties of different materials synergistically. When processing large quantities, as is the case in the automotive industry commonly used manufacturing processes for cutting sandwich panels, like sawing or milling, are not applicable. A common manufacturing process to cut metal sheets in high quantities is shear cutting. However, pre-trials of shear cutting of sandwich panels have shown that it is not possible to achieve flawless cutting surfaces with current process layouts. Characteristic types of failure like high bending of the facings, delamination effects, burr formation and an undefined cracking of the core material were ascertained. Thus, in this study, the influence of cutting parameters, such as the clearance and the punch diameter, on these types of failure is examined. Five different clearances between 0.025 mm and 0.4 mm with two punch diameters, 8 mm and 32 mm, were investigated. In order to compare the influence of different materials, three commercially available sandwich panels were studied. The chosen sandwich panels differ both in the face sheet thickness and the core material. Finally, the shear cutting force is measured to identify a possible correlation between the cutting force and the face bending. As a result, optimal clearances to minimize the face bending are derived. Additionally, the influence of the core stiffness on the cutting force is determined.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Laurent Mezeix ◽  
Christophe Bouvet ◽  
Serge Crézé ◽  
Dominique Poquillon

AbstractMany different sandwich panels are used for aeronautical applications. Open and closed cell structured foam, balsa wood or honeycomb are often used as core materials. When the core material contains closed cells, water accumulation into the cell has to be taken into account. This phenomenon occurs when in service conditions lead to operate in humidity atmosphere. Then, water vapor from air naturally condenses on cold surfaces when the sandwich panel temperature decreases. This water accumulation might increase significantly the weight of the core material. Core with a ventilated structure helps to prevent this phenomenon. Periodic cellular metal (PCM) has been motivated by potential multifunctional applications that exploit their open architecture as well as their apparent superior strength and stiffness: pyramidal, lattice, Kagome truss or woven. One of the drawbacks of these materials is the expensive cost of the manufacturing. Recently, a novel type of sandwich has been developed with bonded metallic fibers as core material. This material presents attractive combination of properties like high specific stiffness, good damping capacity and energy absorption. Metal fibers bonded with a polymeric adhesive or fabricated in a mat-like form consolidated by solid state sintering. Entangled cross-linked carbon fibers have been also studied for using as core material by Laurent Mezeix. In the present study, ventilated core materials are elaborated from networks fibers. The simplicity of elaboration is one of the main advantages of this material. Multifunctional properties are given by mixing different sorts of fibers, by example adding fibers with good electrical conduction to give electrical conductivity properties. In this study network fibers as core material are elaborated using carbon fibers, glass fibers and stainless steel fibers. In aeronautical skins of sandwich panels used are often carbon/epoxy prepreg, so epoxy resin was used to cross-link fibers. The core thickness was chosen at 30 mm and fibers length was chosen at 40 mm. Entanglement, separation of filaments and cross-linking are obtained in a specific blower room. Fibers are introduced in the blower room, compressed air is applied and in same time epoxy resin is sprayed. Indeed one of the sandwich core material properties required is low density, so yarns size need to be decreased by separating filaments. Network fibers are introduced in a specific mould and then are compressed. The density obtained before epoxy spaying is 150 kg/m3. Finally samples are polymerized at 80°C for 2 hours in a furnace under laboratory air. Compressive behavior is study to determinate the influence of fibers natures and the effect of cross-linking. Reproducibility is also checked.


2018 ◽  
Vol 25 (4) ◽  
pp. 649-660
Author(s):  
Aslan Abbasloo ◽  
Mohamad Reza Maheri

Abstract Sandwich panels made of fibre-reinforced plastic (FRP) skins and a honeycomb core can be effectively damped through the choice of the skin and especially of the core materials. Because the core is often highly damped, a lateral deflection that causes more shearing of the core than bending of the skin increases sandwich damping. Aside from the skin and the core material properties, the shearing/bending ratio depends on a number of other, often interacting, factors, including the sandwich planar as well as transverse dimensions, the particular modal pattern in which the panel vibrates and its relationship to the type of skin layup, as well as the panel end conditions. In the present work, using a simple, first-order shear deformation theory, damping results have been produced for simple modes of vibration of a sandwich panel comprising composite skins and a damped honeycomb core, demonstrating the mechanisms by which the above factors affect the FRP skin/honeycomb core sandwich damping.


2019 ◽  
Vol 21 (5) ◽  
pp. 1751-1772
Author(s):  
MA Battley ◽  
TD Allen

Sandwich composite materials are widely used within the marine industry, particularly as hull panels. Water impact loads, known as slamming, can be very significant for these structures, particularly for high-speed craft. These loadings generate local regions of high transverse shear forces near panel boundaries, which can result in transverse shear failures of core materials. The transient nature of slamming loads can cause stress rates that are high enough to affect the strength of the core material, particularly for polymeric foams. Despite the significant body of work on the constitutive behaviour and failure mechanics of sandwich core materials, there is a lack of understanding of how core materials fail in transverse shear during slamming events. There is also only very limited knowledge of how the core shear strengths measured using standardised, often quasi-static material coupon testing relate to their behaviour in a panel-slamming situation. This paper contributes in two novel areas; controlled experimental characterisation of the failure mechanics of sandwich panels subjected to water slamming to understand and quantify the strength of different polymeric core materials, comparison of the failure modes and transverse shear strength of slam-loaded sandwich panels to predictions from material coupon properties. Core types include low, medium and high elongation polymeric foams. The results demonstrate that the more ductile foams perform better as panel structures under slamming relative to their quasi-static properties compared with the more brittle cores. Prediction of the strength of a panel is shown to be highly dependent on the load distribution and whether the static or dynamic core strength is considered. The results support empirical experience that ductile foams perform well under slamming loads, and that high-elongation materials can perform better in slamming situations than predicted by their quasi-static strengths.


2017 ◽  
Vol 11 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Peter Groche ◽  
David Übelacker ◽  
Philipp Stein ◽  
Frank Steinbach ◽  
A. Erman Tekkaya

2021 ◽  
pp. 109963622198923
Author(s):  
Avishek Chanda ◽  
Nam Kyeun Kim ◽  
Willsen Wijaya ◽  
Debes Bhattacharyya

In recent years, the synthetic cores of sandwich panels have experienced an increase in demand to be replaced by environmentally friendly materials. Furthermore, with the stringent fire protocols introduced in the building codes due to recent fire incidents around the world, it is imperative to conduct fire performance studies for all structural materials. The mechanical performances of the different core structures in sandwich panels have been extensively studied and documented in the literature, although the influence of those core structures on the fire reaction properties has not yet been fully understood. The aim of this work is to experimentally investigate, for the first time, the effects of the core structures, namely, corrugated and honeycomb cores manufactured from flax reinforced polymeric composites and radiata pine plywood, on their flammability. A bench-scale cone calorimeter has been employed to measure the fire reaction properties of the two types of materials along with the subsequent effects of the core structures. The orientations of the cores were observed to significantly impact the performances of the samples under fire. The honeycomb cores, with the open cells exposed to the heat flux, generally had better fire performance compared to those of the corrugated cores with higher time to ignition (10 s or more) and time to peak heat release (65 s or more), having almost similar initial masses and peak heat release rates. Furthermore, among the two material systems, the plywood cores outperformed the flax-FRPP cores, specifically in ignition time, smoke production, total heat release and peak heat release rate. The results helped in confirming that the honeycomb cores have overall better fire performance and the use of plywood as the core material is viable even when fire is involved.


2015 ◽  
Vol 133 ◽  
pp. 140-147 ◽  
Author(s):  
Chiara Colombo ◽  
Adele Carradó ◽  
Heinz Palkowski ◽  
Laura Vergani

2018 ◽  
Vol 22 (8) ◽  
pp. 2629-2654
Author(s):  
Ehab Hamed ◽  
Yeoshua Frostig

Sandwich panels can be subjected to significant changes in ambient temperature, which develop and sustain over certain time periods and lead to creep of the core material, and consequently to changes in the internal stresses and deformations with time. This paper deals with this issue with focus on the geometrically nonlinear aspects of structural behaviour. A theoretical model is developed, which combines the concepts of the principle of superposition of viscoelasticity, with the high-order sandwich theory (HSAPT), and the temperature dependency of the viscoelastic material properties. The nonlinear HSAPT formulation accounts for the deformability of the core in shear and through its thickness and it is based on large displacement kinematics of the face sheets. The convolution integral of viscoelasticity is converted into a rheological generalized Maxwell model after the expansion of the relaxation moduli into Prony series with temperature-dependence terms, which enables the solution of the governing equations through an incremental step-by-step time analysis without the need to store the response history. The capabilities of the model are demonstrated through numerical examples. It is shown that the creep of the core material can lead to bifurcation buckling of the sandwich panel under sustained temperatures that are smaller than the critical temperature obtained under an instantaneous increase of temperature.


Sign in / Sign up

Export Citation Format

Share Document