Nonlinear thermo-mechanical behaviour of soft core sandwich panels – Creep effects

2018 ◽  
Vol 22 (8) ◽  
pp. 2629-2654
Author(s):  
Ehab Hamed ◽  
Yeoshua Frostig

Sandwich panels can be subjected to significant changes in ambient temperature, which develop and sustain over certain time periods and lead to creep of the core material, and consequently to changes in the internal stresses and deformations with time. This paper deals with this issue with focus on the geometrically nonlinear aspects of structural behaviour. A theoretical model is developed, which combines the concepts of the principle of superposition of viscoelasticity, with the high-order sandwich theory (HSAPT), and the temperature dependency of the viscoelastic material properties. The nonlinear HSAPT formulation accounts for the deformability of the core in shear and through its thickness and it is based on large displacement kinematics of the face sheets. The convolution integral of viscoelasticity is converted into a rheological generalized Maxwell model after the expansion of the relaxation moduli into Prony series with temperature-dependence terms, which enables the solution of the governing equations through an incremental step-by-step time analysis without the need to store the response history. The capabilities of the model are demonstrated through numerical examples. It is shown that the creep of the core material can lead to bifurcation buckling of the sandwich panel under sustained temperatures that are smaller than the critical temperature obtained under an instantaneous increase of temperature.

2015 ◽  
Vol 825-826 ◽  
pp. 433-440 ◽  
Author(s):  
Philipp Stein ◽  
David Übelacker ◽  
Dirk Holke ◽  
Peter Groche

Continually increasing exhaust emission standards for automobiles and an increasing environmental awareness push design engineers to develop new constructive and material concepts. So-called sandwich panels, consisting of stiff facings and light-weight cores, offer the possibility to combine properties of different materials synergistically. When processing large quantities, as is the case in the automotive industry commonly used manufacturing processes for cutting sandwich panels, like sawing or milling, are not applicable. A common manufacturing process to cut metal sheets in high quantities is shear cutting. However, pre-trials of shear cutting of sandwich panels have shown that it is not possible to achieve flawless cutting surfaces with current process layouts. Characteristic types of failure like high bending of the facings, delamination effects, burr formation and an undefined cracking of the core material were ascertained. Thus, in this study, the influence of cutting parameters, such as the clearance and the punch diameter, on these types of failure is examined. Five different clearances between 0.025 mm and 0.4 mm with two punch diameters, 8 mm and 32 mm, were investigated. In order to compare the influence of different materials, three commercially available sandwich panels were studied. The chosen sandwich panels differ both in the face sheet thickness and the core material. Finally, the shear cutting force is measured to identify a possible correlation between the cutting force and the face bending. As a result, optimal clearances to minimize the face bending are derived. Additionally, the influence of the core stiffness on the cutting force is determined.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Laurent Mezeix ◽  
Christophe Bouvet ◽  
Serge Crézé ◽  
Dominique Poquillon

AbstractMany different sandwich panels are used for aeronautical applications. Open and closed cell structured foam, balsa wood or honeycomb are often used as core materials. When the core material contains closed cells, water accumulation into the cell has to be taken into account. This phenomenon occurs when in service conditions lead to operate in humidity atmosphere. Then, water vapor from air naturally condenses on cold surfaces when the sandwich panel temperature decreases. This water accumulation might increase significantly the weight of the core material. Core with a ventilated structure helps to prevent this phenomenon. Periodic cellular metal (PCM) has been motivated by potential multifunctional applications that exploit their open architecture as well as their apparent superior strength and stiffness: pyramidal, lattice, Kagome truss or woven. One of the drawbacks of these materials is the expensive cost of the manufacturing. Recently, a novel type of sandwich has been developed with bonded metallic fibers as core material. This material presents attractive combination of properties like high specific stiffness, good damping capacity and energy absorption. Metal fibers bonded with a polymeric adhesive or fabricated in a mat-like form consolidated by solid state sintering. Entangled cross-linked carbon fibers have been also studied for using as core material by Laurent Mezeix. In the present study, ventilated core materials are elaborated from networks fibers. The simplicity of elaboration is one of the main advantages of this material. Multifunctional properties are given by mixing different sorts of fibers, by example adding fibers with good electrical conduction to give electrical conductivity properties. In this study network fibers as core material are elaborated using carbon fibers, glass fibers and stainless steel fibers. In aeronautical skins of sandwich panels used are often carbon/epoxy prepreg, so epoxy resin was used to cross-link fibers. The core thickness was chosen at 30 mm and fibers length was chosen at 40 mm. Entanglement, separation of filaments and cross-linking are obtained in a specific blower room. Fibers are introduced in the blower room, compressed air is applied and in same time epoxy resin is sprayed. Indeed one of the sandwich core material properties required is low density, so yarns size need to be decreased by separating filaments. Network fibers are introduced in a specific mould and then are compressed. The density obtained before epoxy spaying is 150 kg/m3. Finally samples are polymerized at 80°C for 2 hours in a furnace under laboratory air. Compressive behavior is study to determinate the influence of fibers natures and the effect of cross-linking. Reproducibility is also checked.


Author(s):  
Francesco Franco ◽  
Kenneth A. Cunefare ◽  
Massimo Ruzzene

Sandwich panels, comprising face sheets enclosing a core, are increasingly common structural elements in a variety of applications, including aircraft fuselages and flight surfaces, vehicle panels, lightweight enclosures, and bulkheads. The design flexibility associated with such composite structures provides significant opportunities for tailoring the structure to the load and dynamic response requirements for the particular application. Design flexibility encompasses the details of the face sheets and the core. This paper deals with the numerical optimization of different sandwich configurations for the purposes of achieving reduced structural acoustic response. Laminated face sheets and core geometries, comprising honeycomb and truss-like structures, are considered. The relative importance of the mass and stiffening properties of the core and face sheets are discussed. The optimization work is carried out using commercial codes. Benefits and limits of using an optimization algorithm based on gradient methods are highlighted.


2018 ◽  
Vol 25 (4) ◽  
pp. 649-660
Author(s):  
Aslan Abbasloo ◽  
Mohamad Reza Maheri

Abstract Sandwich panels made of fibre-reinforced plastic (FRP) skins and a honeycomb core can be effectively damped through the choice of the skin and especially of the core materials. Because the core is often highly damped, a lateral deflection that causes more shearing of the core than bending of the skin increases sandwich damping. Aside from the skin and the core material properties, the shearing/bending ratio depends on a number of other, often interacting, factors, including the sandwich planar as well as transverse dimensions, the particular modal pattern in which the panel vibrates and its relationship to the type of skin layup, as well as the panel end conditions. In the present work, using a simple, first-order shear deformation theory, damping results have been produced for simple modes of vibration of a sandwich panel comprising composite skins and a damped honeycomb core, demonstrating the mechanisms by which the above factors affect the FRP skin/honeycomb core sandwich damping.


2019 ◽  
Vol 21 (5) ◽  
pp. 1751-1772
Author(s):  
MA Battley ◽  
TD Allen

Sandwich composite materials are widely used within the marine industry, particularly as hull panels. Water impact loads, known as slamming, can be very significant for these structures, particularly for high-speed craft. These loadings generate local regions of high transverse shear forces near panel boundaries, which can result in transverse shear failures of core materials. The transient nature of slamming loads can cause stress rates that are high enough to affect the strength of the core material, particularly for polymeric foams. Despite the significant body of work on the constitutive behaviour and failure mechanics of sandwich core materials, there is a lack of understanding of how core materials fail in transverse shear during slamming events. There is also only very limited knowledge of how the core shear strengths measured using standardised, often quasi-static material coupon testing relate to their behaviour in a panel-slamming situation. This paper contributes in two novel areas; controlled experimental characterisation of the failure mechanics of sandwich panels subjected to water slamming to understand and quantify the strength of different polymeric core materials, comparison of the failure modes and transverse shear strength of slam-loaded sandwich panels to predictions from material coupon properties. Core types include low, medium and high elongation polymeric foams. The results demonstrate that the more ductile foams perform better as panel structures under slamming relative to their quasi-static properties compared with the more brittle cores. Prediction of the strength of a panel is shown to be highly dependent on the load distribution and whether the static or dynamic core strength is considered. The results support empirical experience that ductile foams perform well under slamming loads, and that high-elongation materials can perform better in slamming situations than predicted by their quasi-static strengths.


2000 ◽  
Author(s):  
Liviu Librescu

Abstract This paper deals with a comprehensive geometrically nonlinear theory of shallow sandwich shells that includes also the effect of the initial geometric imperfections. It is assumed that the face-sheets of the sandwich structure are built-up from anisotropic materials layers, whereas the core layer from an orthotropic material. As a result of its features the structural model can provide important information related to the load carrying capacity of sandwich structures in the pre- and postbuckling ranges. Moreover, by using the directionality properties of face-sheets materials, possibilities of enhancing the load carrying capacity of sandwich shells/plates are reached. Selected numerical illustrations emphasizing these features are presented and pertinent conclusions on the beneficial implications of anisotropy of face-sheets and core layer materials upon the load-carrying capacity of sandwich panels are emphasized. Under the present study, the sandwich structure consists of a thick core-layer bonded by the face-sheets that consist of composite anisotropic materials, symmetrically laminated with respect to the mid-surface of the core-layer. The initial geometric imperfection consisting of a stress free initial transversal deflection, will be also incorporated in the study. The loads under which the nonlinear response will be analyzed consist basically of uniaxial/biaxial compressive edge and lateral loads.


2017 ◽  
Vol 21 (8) ◽  
pp. 2654-2679 ◽  
Author(s):  
Peter Rupp ◽  
Peter Elsner ◽  
Kay A Weidenmann

This work focuses on failure mode maps of sandwich panels exposed to bending load, which were produced using a polyurethane spraying process. This process allows for an automated production of sandwich panels omitting a separate bonding step of the face sheets to the core. The investigated sandwich panels consisted of carbon fiber reinforced face sheets in various configurations, and four different core structures of aluminum foam or Nomex honeycomb. After production, measurements of the pores inside the core foam structures, the fiber package thickness inside the face sheets, and the density homogeneity of the core structure were made using X-ray computed tomography. The failure mode maps were based on the individual mechanical properties of the face sheets and the core, determined by mechanical testing. The critical forces determining the failure modes were partially modified to fit the application on foam core structures and face sheets with a porous matrix. The verification of the failure modes was performed with four-point bending tests. Since all tested configurations of sandwich specimens were produced using the same process route, the applied models for the creation of the failure mode maps could be verified for numerous parameter combinations. Except for two parameters with inconstant properties, the failure modes determined by the failure mode maps matched the observed failure modes determined by the bending tests.


2021 ◽  
pp. 109963622198923
Author(s):  
Avishek Chanda ◽  
Nam Kyeun Kim ◽  
Willsen Wijaya ◽  
Debes Bhattacharyya

In recent years, the synthetic cores of sandwich panels have experienced an increase in demand to be replaced by environmentally friendly materials. Furthermore, with the stringent fire protocols introduced in the building codes due to recent fire incidents around the world, it is imperative to conduct fire performance studies for all structural materials. The mechanical performances of the different core structures in sandwich panels have been extensively studied and documented in the literature, although the influence of those core structures on the fire reaction properties has not yet been fully understood. The aim of this work is to experimentally investigate, for the first time, the effects of the core structures, namely, corrugated and honeycomb cores manufactured from flax reinforced polymeric composites and radiata pine plywood, on their flammability. A bench-scale cone calorimeter has been employed to measure the fire reaction properties of the two types of materials along with the subsequent effects of the core structures. The orientations of the cores were observed to significantly impact the performances of the samples under fire. The honeycomb cores, with the open cells exposed to the heat flux, generally had better fire performance compared to those of the corrugated cores with higher time to ignition (10 s or more) and time to peak heat release (65 s or more), having almost similar initial masses and peak heat release rates. Furthermore, among the two material systems, the plywood cores outperformed the flax-FRPP cores, specifically in ignition time, smoke production, total heat release and peak heat release rate. The results helped in confirming that the honeycomb cores have overall better fire performance and the use of plywood as the core material is viable even when fire is involved.


2012 ◽  
Vol 14 (6) ◽  
pp. 715-733
Author(s):  
Karamat Malekzadeh Fard ◽  
Alireza Sayyidmousavi ◽  
Zouheir Fawaz ◽  
Habiba Bougherara

In this article, a three-dimensional finite element model is proposed to study the effect of distributed attached mass with thickness and stiffness on the buckling instability of sandwich panels with transversely flexible cores. Unlike the previous works in the literature which have made use of unified displacement theories, the present model uses different types of finite elements to model the core and the face sheets. It utilizes shell elements for the face sheets and three-dimensional solid elements for the core which enables the model to account for the transverse flexibility of the structure. The motions of the face sheets and the core as well as the attached mass are related through defining constraint equations between the nodes of their respective finite elements based on the concept of master and slave nodes which is incorporated into the finite element analysis program ANSYS through a user-defined subroutine. The validated finite element model is then used to study the effects of size, thickness, material property, aspect ratio, and the position of the attached mass on the buckling load of a sandwich panel under different combinations of boundary conditions. The results presented in this study have hitherto not been reported in the literature.


2017 ◽  
Vol 21 (8) ◽  
pp. 2779-2800 ◽  
Author(s):  
Peter Rupp ◽  
Peter Elsner ◽  
Kay A Weidenmann

In this paper, the bending stiffness-to-weight-ratio of novel hybrid sandwich structures is investigated. The build-up of the sandwich panels consisted of face sheets made from carbon fibre reinforced polymer, aluminium foam cores and an interface of foamed polyurethane. The sandwich panels were produced in a single step, infiltrating the face sheet fibres and connecting the face sheets to the core simultaneously. By means of mechanical characterization, specimens with several variations of face sheet architecture and thickness, core structure and interface properties were examined. Quasi-static four-point bending and flatwise compression tests of the sandwich composites were conducted, as well as tensile tests of the face sheets. The results of the tensile and compressive tests were integrated in analytical models, describing the sandwich stiffness depending on the load case and the face sheet volume fraction. The effective Young’s modulus of the composite, measured in the four-point bending test, correlates well to the modelled effective bending modulus calculated from the single components face sheet and core. The model underestimates the effective density of the bending specimens. It could be shown that this underestimation results from the polyurethane foam connecting the face sheets to the core, as the mass of this polyurethane is not included in the model.


Sign in / Sign up

Export Citation Format

Share Document