Load Bearing Capacity Tests of Mechanical Joining on Timber-Concrete Beam

2014 ◽  
Vol 1020 ◽  
pp. 177-181
Author(s):  
Petr Agel ◽  
Antonin Lokaj

Timber-concrete composite structures, which use advantages of both materials, are suitable for new works and reconstructions of civil and residential buildings. There are described many methods of joining between timber beam and concrete slab in technical literature. Joints are more and more sophisticated which brings higher demands on work control and technology. Main goal of the paper is in design technologically low demanding method of joining with steel plates and nails, to test its shear strength and to compare it with other similar joining .

2014 ◽  
Vol 893 ◽  
pp. 614-617
Author(s):  
Petr Agel ◽  
Antonín Lokaj

Timber-concrete composite structures, which use advantages of both materials, are suitable for new works and reconstructions of civil and residential buildings. There are described many methods of joining between timber beam and concrete slab in technical literature. Joints are more and more sophisticated which brings higher demands on work control and technology. Main goal of the paper is in design technologically low demanding method of joining with steel plates and nails, to test its shear strength and to compare it with other similar joining .


Author(s):  
Petr Agel ◽  
Antonín Lokaj

Abstract Timber-concrete composite structures which use advantages of both materials are suitable for new works and reconstructions of civil and residential buildings. There are described many methods of joining between timber beam and concrete slab in technical literature. Joints are more and more sophisticate which brings higher demands of work control and technology. Main goal of this paper is in design technologically low demanding method of joining with steel plates and nails, to test its shear strength and compare it with other similar joining method.


2017 ◽  
Vol 27 (4) ◽  
pp. 143-156 ◽  
Author(s):  
Maciej Szumigała ◽  
Ewa Szumigała ◽  
Łukasz Polus

Abstract This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.


2013 ◽  
Vol 65 ◽  
pp. 434-439 ◽  
Author(s):  
Petr Agel ◽  
Antonín Lokaj ◽  
Miroslav Rosmanit

Author(s):  
Larice Gomes Justino Miranda ◽  
Otávio Prates Aguiar ◽  
Paulo Estevão Carvalho Silvério ◽  
Rodrigo Barreto Caldas

Abstract Since the development of perforated plate shear connectors, different formulations have been proposed to predict their shear strength. Most of these formulations were derived from standard push-tests on multiple concrete filled holes (CFH) specimens simulating specific steel-concrete composite beam applications. Aiming at a more general application of these connectors in composite structures and the understanding of the physical and geometric parameters that influence their shear strength, the present work evaluated the use of 12 different formulations to predict 92 test results of single-hole specimens extracted from the literature. Such tests were chosen because the single-hole configuration allows better isolation of the connection behavior which facilitates comparative analysis. The predictions were statistically evaluated, and it was considered that the best formulations were those that showed lower scatter of data and a correction factor closer to one. Also, it was investigated if the individual terms that constitute the formulations adequately describe or show relation to the mechanics that govern the connection. It was verified that the best statistically rated formulations were also the ones showing clearer relation to the connector mechanical behavior. Among the evaluated formulations, three were significantly better than the others for strength prediction, however, it was noted that they can be further improved by considering the influence of concrete confinement and plate thickness on the hole’s strength.


2017 ◽  
Vol 27 (4) ◽  
pp. 131-141 ◽  
Author(s):  
Maciej Szumigała ◽  
Marcin Chybiński ◽  
Łukasz Polus

Abstract This paper presents a new type of composite structures - aluminium-timber beams. These structures have an advantage over other existing composite structures, because they are lighter. However, their application may be limited due to the high price of aluminium alloys. The authors of this article made an attempt to calculate the load-bearing capacity of an aluminium-timber beam.


2010 ◽  
Vol 133-134 ◽  
pp. 1095-1100 ◽  
Author(s):  
Klaus Holschemacher ◽  
Hubertus Kieslich

Regarding the redevelopment of existing residential buildings the timber-concrete-compo- site (TCC) construction is an innovative possibility to toughen up timber beam ceilings. Thereby a concrete slab is added to the timber beams. Both parts of the construction are connected by using special shear connectors. In this case timber is mainly loaded in tension and concrete is generally loaded in compression. The bearing capacity as well as the serviceability of the ceiling can be improved by this composite construction. The idea of combining the construction materials timber and concrete in the way that they both can take and carry on loads is not new. In Germany it was mentioned in 1939 for the first time. The cityscape of Central European towns is mainly characterized by buildings constructed before the 50th of the last century. The protection of the historical main structure of these buildings is getting more important today. Floors built up till that time were primarily made of timber. Research in Germany has been intensified during the last decade. This paper will show the specific properties of timber-concrete composite floors. Several metallic combing agents exist currently. Type and distance of the connection members influence the load bearing behavior of the composite construction. The main types used in Germany will be presented in this paper. The possible ways of calculating timber-concrete composite ceilings will be given and the design basis will be explained.


2021 ◽  
Vol 180 ◽  
pp. 106583
Author(s):  
Wei Xing ◽  
Li Gang ◽  
Xiao Lin ◽  
Zhou Linjun ◽  
He Ke ◽  
...  

2005 ◽  
Vol 32 (2) ◽  
pp. 314-328 ◽  
Author(s):  
Young K Ju ◽  
Do-Hyun Kim ◽  
Sang-Dae Kim

The number of high-rise buildings has greatly increased in Korea, and storey height is a significant component of tall residential buildings due to the limited city area. To reduce storey height, the wide beam has been adopted in some projects in Seoul such as Trump World, Galleria Palace, and Richencia. The joints between the wide beam and the core wall were too narrow to place the reinforcement, however. This paper investigates a newly developed structural system called the innovative, technical, economical, and convenient hybrid system (iTECH system). The iTECH system has an asymmetric steel assembly with web openings, where the top plate is welded on top of inverted structural "tees" whose cut is referred to as a "honeycomb" type. Both sides of the web and the slab are filled with cast-in-place concrete. The shear capacity was experimentally evaluated and verified, with parameters determined by factors that shared the shear strength of the iTECH beam. The steel web, inner concrete panel, and outer concrete panel contributed to the shear strength of the iTECH beam. The shear stirrup did not contribute much to the shear strength, however, and therefore a design equation using the steel web and inner concrete panel was suggested.Key words: composite beam, shear capacity, monotonic test, high-rise building.


2016 ◽  
Vol 861 ◽  
pp. 88-95
Author(s):  
Balázs Nagy ◽  
Elek Tóth

In this research, conjugated thermal and fluid dynamics simulations are presented on a modern hollow clay slab blocks filled pre-stressed reinforced concrete beam slab construction. The simulation parameters were set from Eurocode standards and calibrated using data from standardized fire tests of the same slab construction. We evaluated the temperature distributions of the slabs under transient conditions against standard fire load. Knowing the temperature distribution against time at certain points of the structure, the loss of load bearing capacity of the structure is definable at elevated temperatures. The results demonstrated that we could pre-establish the thermal behavior of complex composite structures exposed to fire using thermal and CFD simulation tools. Our results and method of fire resistance tests can contribute to fire safety planning of buildings.


Sign in / Sign up

Export Citation Format

Share Document