scholarly journals Preliminary Analysis of the Aluminiumtimber Composite Beams

2017 ◽  
Vol 27 (4) ◽  
pp. 131-141 ◽  
Author(s):  
Maciej Szumigała ◽  
Marcin Chybiński ◽  
Łukasz Polus

Abstract This paper presents a new type of composite structures - aluminium-timber beams. These structures have an advantage over other existing composite structures, because they are lighter. However, their application may be limited due to the high price of aluminium alloys. The authors of this article made an attempt to calculate the load-bearing capacity of an aluminium-timber beam.

2017 ◽  
Vol 27 (4) ◽  
pp. 143-156 ◽  
Author(s):  
Maciej Szumigała ◽  
Ewa Szumigała ◽  
Łukasz Polus

Abstract This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.


2020 ◽  
Vol 23 (11) ◽  
pp. 2276-2291
Author(s):  
Rui Pang ◽  
Yibo Zhang ◽  
Longji Dang ◽  
Lanbo Zhang ◽  
Shuting Liang

This article proposes a new type of discrete connected precast reinforced concrete diaphragm floor system that consists of precast flat slabs and slab joint connectors. An experimental investigation of discrete connected new-type precast reinforced concrete diaphragm under a vertical distributed static load was conducted, and the effect of slab joint connectors on the load-bearing capacity was evaluated. Then, a finite element analysis of discrete connected new-type precast reinforced concrete diaphragm, precast reinforced concrete floors without slab connectors, and cast-in-situ reinforced concrete floor were performed to understand their working mechanism and determine the differences in load-bearing behavior. The results indicate that the load-bearing capacity and stiffness of discrete connected new-type precast reinforced concrete diaphragm increase considerably as the hairpin and cover plate hybrid slab joint connectors can efficiently connect adjacent precast slabs and enable them to work together under a vertical load by transmitting the shear and moment forces in the orthogonal slab laying direction. The deflection of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction is mainly caused by the opening deformation of the slab joint and the rotational deformation of the precast slabs. This flexural deformation feature can provide reference for establishing the bending stiffness analytical model of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction, which is vitally important for foundation of the vertical bearing capacity and deformation calculation method. The deflection and crack distribution patterns infer that the discrete connected new-type precast reinforced concrete diaphragm processes the deformation characteristic of two-way slab floor, which can provide a basis for the theoretical analysis of discrete connected new-type precast reinforced concrete diaphragm.


2015 ◽  
Vol 19 (4) ◽  
pp. 99-110 ◽  
Author(s):  
Piotr Szewczyk ◽  
Maciej Szumigała

Abstract This paper presents the numerical modelling of strengthening a steel-concrete composite beam. The main assumption is that the strengthening is not the effect of the state of a failure of a structure, but it resulted from the need to increase the load-bearing capacity and stiffness of the structure (for example: due to a change in the use of the object). The expected solution is strengthening without the necessity to completely unload the structures (to reduce the scope of works, the cost of modernization and to shorten the time). The problem is presented on the example of a composite beam which was strengthened through welding a steel plate to the lower flange of the steel beam. The paper describes how energy parameters are used to evaluate the efficiency of structures’ strengthening and proposes an appropriate solution.


Author(s):  
Valentino Vigneri ◽  
Christoph Odenbreit ◽  
Matthias Braun

For composite beams using novel steel sheeting, the current Eurocode 4 rules sometimes overestimate the load bearing capacity of the shear connector. This is due to the larger rib heights and the smaller rib widths in comparison with the old studies, which have been carried out to calibrate the current design equations. The RFCS Project “DISCCO” investigated this phenomena and the working group under mandate M515, CEN/TC250/SC4/SC4.T3 is enhancing this equation and working on a proposal to be taken over in the new version of Eurocode 4.The proposed new equation covers the failure behaviour of the shear connection more in detail. The test results show, that the failure consists in a combined concrete cone and stud in bending. Due to the geometry of novel steel sheeting, the load bearing capacity of the headed stud shear connector is no more limited by its shear capacity, but by its bending capacity.A 3D non-linear finite element model is developed and validated through the support of the DISCCO push-out tests. A good agreement between numerical and experimental results in terms of force-slip behaviour is achieved. Special attention of this work lies on the numerical evaluation of the number of plastic hinges ny: a stress-based procedure is presented and the results are compared to the equations presented for new Eurocode 4.The numerical simulations show that the upper plastic hinge moves up as the slip increases due to the progressive crushing of the concrete in the rib. From the parametric study, it turns out that ny is linearly proportional to the embedment depth. Compared to pre-punched hole decking, through-deck welding specimen activates less plastic hinges in the studs because of the higher stiffness provided at the base of the stud.


2018 ◽  
Vol 234 ◽  
pp. 04002 ◽  
Author(s):  
Glib Vatulia ◽  
Yevhen Orel ◽  
Maryna Rezunenko ◽  
Nataliia Panchenko

In the current practice of construction and design of transport facilities, structures with external reinforcement are commonly used which effectively resist compression. The use of steel-concrete and composite structures enables us to reduce material consumption and cost of structures significantly. There are a few established approaches used to evaluate the load-bearing capacity of steel-concrete structures under axial and eccentric compression, each being based on the initial prerequisites, which underlie the calculation formulas. In this paper, the functional relationship of the value of the maximum load-bearing capacity of rectangular concrete-filled steel tubular (CFST) columns under axial compression with the random eccentricity is plotted. A regression model is proposed based on the methods of mathematical statistics, which allows for the evaluation of the impact of geometrical and physical characteristics of rectangular CFST columns on the value of their load-bearing capacity. The correspondence of the obtained model to the experimental data, as well as the significance of the regression parameters are confirmed by Fisher and Student criteria.


2021 ◽  
Author(s):  
Paul Dreifke ◽  
Tim Göckel ◽  
Andreas Laubach ◽  
Jürgen Schaffitzel‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌

<p>Timber-concrete-composite structures for road bridges could be much more often used in the field of medium-span road bridges due to their good ecological and structural performance. Therefore, an appropriate consideration of the punctual connections usually used for such bridges is necessary. Those connectors have a large load-bearing capacity and stiffness. While there are established methods for determining the stiffness and load-bearing capacity in the main longitudinal load- bearing direction, the secondary load-bearing behaviour in transverse and vertical direction is usually not determined for those bridges. By assessing test results and evaluation of FE simulations, this article presents an approach of how a calculation method can be derived that makes the structural design of timber-concrete-composite bridges safely even in more demanding application scenarios.</p>


2020 ◽  
Vol 4 (157) ◽  
pp. 12-17
Author(s):  
S. Shekhorkina ◽  
M. Savytskyi ◽  
T. Kovtun-Gorbachova

The current trend in the construction industry is the development of projects of multi-storey buildings with a hybrid structural system using mainly timber load-bearing elements. The joints of load-bearing elements are criti-cal points of the frame with glued timber structures in terms of ensuring the load-bearing capacity and servicea-bility of the entire system. Existing publications in this area are mainly aimed at theoretical and experimental as-sessment of the stress-strain state of joints, while information on the construction of components for multi-storey buildings and recommendations for their design is extremely insufficient. The article presents structural solutions of the joints of glued laminated timber columns and beams, namely, hinged, which takes and transmits to the col-umn the support reaction of the beam, and rigid, which in addition to the support reaction takes the bending mo-ment. The support reaction from the beam to the column is transferred through a bolted connection and a T-shaped welded metal element. The bending moment is taken by two angles, which are fixed to the beam and welded to a vertical plate. Criteria of conformity of the proposed joints to load-bearing capacity requirements are pro-posed. The load-bearing capacity of the joint under the action of the support shear force is determined by the shear strength of the bolts in the column; the embedment strength of the metal of the T-shaped plate in the hole and bearing capacity of the bolted connection in the timber element. The action of the support bending moment requires the strength of the angles fastening to the beam and wood in the area of the bolts installation. A detailed algorithm for calculating the proposed design solutions in accordance with the requirements of the design stand-ards has been developed. Keywords: joint, glued laminated timber, beam, column, bearing capacity.


2018 ◽  
Vol 247 ◽  
pp. 00059
Author(s):  
Kamil Kmiecik

The fire development in timber buildings may have a different intensity depending on the location in which the fire originated. The large-space timber buildings are characterized by a large area with a comparatively low height, which makes fire-gas evacuation and air circulation difficult. This paper presents an investigation on the influence of the fire source location on the load-bearing capacity of timber beam exposed to fire. The finite element software Fire Dynamics Simulator (FDS) was used for numerical fire modelling, specifying the time-varying spatial maps of the fire-plume-gas temperature on the basis of the equations taken from the fluid dynamics methodology with aerodynamic and thermodynamic variables. The obtained results from the FDS were used to determine the load-bearing capacity of timber beam using the SAFIR software. The results of numerical simulations showed that the fire source location has a significant influence on the load-bearing capacity of timber beam exposed to fire.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Pavel Marsalek ◽  
Martin Sotola ◽  
David Rybansky ◽  
Vojtech Repa ◽  
Radim Halama ◽  
...  

Flexible structures (FS) are thin shells with a pattern of holes. The stiffness of the structure in the normal direction is reduced by the shape of gaps rather than by the choice of the material based on mechanical properties such as Young’s modulus. This paper presents virtual prototyping of 3D printed flexible structures with selected planar patterns using laboratory testing and computer modeling. The objective of this work is to develop a non-linear computational model evaluating the structure’s stiffness and its experimental verification; in addition, we aimed to identify the best of the proposed patterns with respect to its stiffness: load-bearing capacity ratio. Following validation, the validated computational model is used for a parametric study of selected patterns. Nylon—Polyamide 12—was chosen for the purposes of this study as an appropriate flexible material suitable for 3D printing. At the end of the work, a computational model of the selected structure with modeling of load-bearing capacity is presented. The obtained results can be used in the design of external biomedical applications such as orthoses, prostheses, cranial remoulding helmets padding, or a new type of adaptive cushions. This paper is an extension of the conference paper: “Modeling and Testing of 3D Printed Flexible Structures with Three-pointed Star Pattern Used in Biomedical Applications” by authors Repa et al.


Sign in / Sign up

Export Citation Format

Share Document