Carbon Dioxide Capture at Various Temperatures Using Ca(OH)2 Sorbent Fabricated by Sol-Gel Route in Ethanol Media

2014 ◽  
Vol 1024 ◽  
pp. 35-38
Author(s):  
Farah Diana Mohd Daud ◽  
Srimala Sreekantan ◽  
Abdul Rahman Mohamed

Carbon dioxide (CO2) is considered to be the main greenhouse gas contributing to global warming and climate change. Therefore, the present paper investigates the CO2-capture performance of synthesized calcium hydroxides, Ca(OH)2 sorbent at different temperatures which are 350, 450, 550 and 650°C. The CO2 adsorption of the materials synthesized was studied in a thermo-gravimetric analyzer (TGA). The CO2 adsorption temperature strongly influenced the capture performance of the absorbent. The Ca(OH)2 sorbent are prepared by hydrolysis of calcium alkoxides, NaOH as precipitating agent and mixed solvent of ethanol with deionized (DI) water as medium at 35°C. X- ray diffraction (XRD) result showed 40 nm crystallite size of Ca(OH)2 hexagonal crystal structures. The Ca(OH)2 particle size and morphological properties before and after CO2 adsorption are studied by Field Emission Scanning Electron Microscopy (FESEM). The FESEM image indeed showed the rod like shape of Ca(OH)2 structures with rod length increased from 765 to 893 nm while the diameter is between 140 to 160 nm. When Ca(OH)2 sorbent adsorbed CO2, the structures are rigid interconnected each others like a lump shaped. The prepared Ca(OH)2 sorbent possesses a great potential to capture CO2 when increased temperature. Nevertheless, at intermediate temperatures (350-450°C), Ca(OH)2 sorbent still demonstrates a higher CO2 capture capacity than other intermediate temperature adsorbents such as layered double hydroxides (LDHs), lithium zirconates (LiZrO3) and hydrotalcites.

2019 ◽  
Vol 360 ◽  
pp. 1199-1212 ◽  
Author(s):  
Edith Mawunya Kutorglo ◽  
Fatima Hassouna ◽  
Anna Beltzung ◽  
Dušan Kopecký ◽  
Ivona Sedlářová ◽  
...  

Author(s):  
Theodore Hanein ◽  
Marco Simoni ◽  
Chun Long Woo ◽  
John L Provis ◽  
Hajime Kinoshita

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (~900°C). A novel...


Author(s):  
E. J. Jelmy ◽  
Nishanth Thomas ◽  
Dhanu Treasa Mathew ◽  
Jesna Louis ◽  
Nisha T Padmanabhan ◽  
...  

The investigations on anthropogenic carbon dioxide (CO2) capture and conversion have a vital role in eradicating the global warming and energy crisis. In this context, defect- engineered two-dimensional (2D) nanomaterials...


Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 941
Author(s):  
Jun Liu ◽  
Qiang Chen ◽  
Peng Qi

Upgrading raw biogas to methane (CH4) is a vital prerequisite for the utilization of biogas as a vehicle fuel or the similar field as well. In this work, biogas yield from the anaerobic fermentation of food waste containing methane (CH4, 60.4%), carbon dioxide (CO2, 29.1%), hydrogen sulfide (H2S, 1.5%), nitrogen (N2, 7.35%) and oxygen (O2, 1.6%) was upgraded by dynamic adsorption. The hydrogen sulfide was removed from the biogas in advance by iron oxide (Fe2O3) because of its corrosion of the equipment. Commercial 13X zeolite and carbon molecular sieve (CMS) were used to remove the other impurity gases from wet or dry biogas. It was found that neither 13X zeolite nor CMS could effectively remove each of the impurities in the wet biogas for the effect of water vapor. However, 13X zeolite could effectively remove CO2 after the biogas was dried with silica and showed a CO2 adsorption capacity of 78 mg/g at the condition of 0.2 MPa and 25 °C. Additionally, 13X zeolite almost did not adsorb nitrogen (N2), so the CH4 was merely boosted to ac. 91% after the desulfurated dry biogas passed through 13X zeolite, nitrogen remaining in the biogas. CMS would exhibit superior N2 adsorption capacity and low CO2 adsorption capacity if some N2 was present in biogas, so CMS was able to remove all the nitrogen and fractional carbon dioxide from the desulfurated dry biogas in a period of time. Finally, when the desulfurated dry biogas passed through CMS and 13X zeolite in turn, the N2 and CO2 were sequentially removed, and then followed the high purity CH4 (≥96%).


2020 ◽  
Vol 259 ◽  
pp. 112869 ◽  
Author(s):  
Moon Keun Kim ◽  
Luca Baldini ◽  
Hansjürg Leibundgut ◽  
Jan Andre Wurzbacher

Sign in / Sign up

Export Citation Format

Share Document