Impact of structure, doping and defect- engineering in 2D materials for CO2 capture and conversion

Author(s):  
E. J. Jelmy ◽  
Nishanth Thomas ◽  
Dhanu Treasa Mathew ◽  
Jesna Louis ◽  
Nisha T Padmanabhan ◽  
...  

The investigations on anthropogenic carbon dioxide (CO2) capture and conversion have a vital role in eradicating the global warming and energy crisis. In this context, defect- engineered two-dimensional (2D) nanomaterials...

Nanoscale ◽  
2020 ◽  
Author(s):  
Tong Wu ◽  
Chenlong Dong ◽  
Du Sun ◽  
Fu Qiang Huang

The electrocatalytic overall water splitting can efficiently and sustainably produce clean hydrogen energy to alleviate the global energy crisis and environmental pollution. Two-dimensional (2D) materials with unique band structure and...


2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...


2017 ◽  
Vol 1 (9) ◽  
pp. 1875-1898 ◽  
Author(s):  
Yong Chen ◽  
Gan Jia ◽  
Yingfei Hu ◽  
Guozheng Fan ◽  
Yuen Hong Tsang ◽  
...  

In this study, we summarize a series of typical 2D nanomaterials for photocatalytic CO2conversion. Furthermore, based on the characteristics of 2D materials and the current status of research on photocatalytic CO2reduction, the challenges and opportunities of 2D materials as prospective photocatalysts for CO2reduction will also be discussed.


2019 ◽  
Vol 360 ◽  
pp. 1199-1212 ◽  
Author(s):  
Edith Mawunya Kutorglo ◽  
Fatima Hassouna ◽  
Anna Beltzung ◽  
Dušan Kopecký ◽  
Ivona Sedlářová ◽  
...  

Author(s):  
Theodore Hanein ◽  
Marco Simoni ◽  
Chun Long Woo ◽  
John L Provis ◽  
Hajime Kinoshita

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (~900°C). A novel...


NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Xiaobei Zang ◽  
Teng Wang ◽  
Zhiyuan Han ◽  
Lingtong Li ◽  
Xin Wu

The upcoming energy crisis and the increasing power requirements of electronic devices have drawn enormous attention to research in the field of energy storage. Owing to compelling electrochemical and mechanical properties, two-dimensional nanomaterials can be used as electrodes on lithium-ion batteries to obtain high capacity and long cycle life. This review summarized the recent advances in the application of 2D nanomaterials on the electrode materials of lithium-ion batteries.


Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


Sign in / Sign up

Export Citation Format

Share Document