Soil Grouting as Seismic Liquefaction Countermeasure

2014 ◽  
Vol 1025-1026 ◽  
pp. 1035-1040 ◽  
Author(s):  
Ahmet Pamuk ◽  
Patricia Gallagher ◽  
Korhan Adalier

This paper presents a series of centrifuge tests studying the performance of colloidal silica grouted soil layers during permanent lateral ground deformations due to earthquake induced lateral spreading. Two centrifuge tests were conducted to study liquefaction resistance of liquefiable soil deposits stabilized with colloidal silica, and then the results were compared with the tests conducted on similar soil deposits without any soil remediation. The testing results on remediated soils showed excellent resistance against the liquefaction and associated lateral and vertical ground deformations.

2007 ◽  
Vol 44 (7) ◽  
pp. 873-890 ◽  
Author(s):  
Mahmood Seid-Karbasi ◽  
Peter M Byrne

Experience from past earthquakes indicates that seismically induced large lateral spreads and flow slides in alluvial sand deposits have taken place in coastal and river areas in many parts of the world. The ground slope in these slides was often not very steep, gentler than a few percent. Recent research indicates that the presence of low-permeability silt or clay sublayers within the sand deposits is responsible for this behaviour. Such layers form a barrier to upward flow of water associated with earthquake-generated pore pressures. This causes an accumulation of pore water at the base of the layers, resulting in greatly reduced strength and possible slope instability. This paper uses an effective stress coupled stress-flow dynamic analyses procedure to demonstrate the effects of a low-permeability barrier layer on ground deformations from an earthquake event. The analyses show that an expansion zone develops at the base of barrier layers in stratified soil deposits under seismic loading which can greatly reduce shear strength and result in large deformations and flow failure. Without such a layer or layers, the slope may undergo significant displacements, but not a flow slide. Slopes with a barrier layer can be stabilized by drains.Key words: liquefaction, lateral spreads, stratification, flow failure, dynamic analysis, UBCSAND model, drain.


Author(s):  
Milad Souri

The results of five centrifuge models were used to evaluate the response of pile-supported wharves subjected to inertial and liquefaction-induced lateral spreading loads. The centrifuge models contained pile groups that were embedded in rockfill dikes over layers of loose to dense sand and were shaken by a series of ground motions. The p-y curves were back-calculated for both dynamic and static loading from centrifuge data and were compared against commonly used American Petroleum Institute p-y relationships. It was found that liquefaction in loose sand resulted in a significant reduction in ultimate soil resistance. It was also found that incorporating p-multipliers that are proportional to the pore water pressure ratio in granular materials is adequate for estimating pile demands in pseudo-static analysis. The unique contribution of this study is that the piles in these tests were subjected to combined effects of inertial loads from the superstructure and kinematic loads from liquefaction-induced lateral spreading.


Author(s):  
Gopal S. P. Madabhushi ◽  
Samy Garcia-Torres

AbstractSoil liquefaction can cause excessive damage to structures as witnessed in many recent earthquakes. The damage to small/medium-sized buildings can lead to excessive death toll and economic losses due to the sheer number of such buildings. Economic and sustainable methods to mitigate liquefaction damage to such buildings are therefore required. In this paper, the use of rubble brick as a material to construct earthquake drains is proposed. The efficacy of these drains to mitigate liquefaction effects was investigated, for the first time to include the effects of the foundations of a structure by using dynamic centrifuge testing. It will be shown that performance of the foundation in terms of its settlement was improved by the rubble brick drains by directly comparing them to the foundation on unimproved, liquefiable ground. The dynamic response in terms of horizontal accelerations and rotations will be compared. The dynamic centrifuge tests also yielded valuable information with regard to the excess pore pressure variation below the foundations both spatially and temporally. Differences of excess pore pressures between the improved and unimproved ground will be compared. Finally, a simplified 3D finite element analysis will be introduced that will be shown to satisfactorily capture the settlement characteristics of the foundation located on liquefiable soil with earthquake drains.


2014 ◽  
Vol 08 (01) ◽  
pp. 1450001 ◽  
Author(s):  
BO LI ◽  
XIANGWU ZENG ◽  
HAO YU

The micro-fabric of deposition reflects the imprints of its geologic and stress history, its depositional environment, and its weathering history. Recent experience shows that the fabric anisotropy does influence the static and dynamic behavior of granular materials. In this study, a series of centrifuge tests are conducted to investigate the effects of fabric anisotropy on the dynamic response in the free field. The results show the acceleration, pore pressure, and residual settlement is significantly affected by the fabric anisotropy of the ground, which shows the liquefaction resistance of the ground. Meanwhile, the response of acceleration is analyzed in frequency domain, which shows that the model prepared by 90° absorbs more energy than that of 0°. To verify the effects induced by the initial fabric, permeability test are conducted and related to the liquefaction potential. The results indicate the fabric anisotropy should be incorporated into the design method.


2021 ◽  
Vol 11 (24) ◽  
pp. 11631
Author(s):  
Xiuwei Chai ◽  
Jingyuan Liu ◽  
Yu Zhou

This study is aimed at numerically investigating the cnoidal wave-induced dynamics characteristics and the liquefaction process in a loosely deposited seabed floor in a shallow water environment. To achieve this goal, the integrated model FSSI-CAS 2D is taken as the computational platform, and the advanced soil model Pastor–Zienkiewicz Mark III is utilized to describe the complicated mechanical behavior of loose seabed soil. The computational results show that a significant lateral spreading and vertical subsidence could be observed in the loosely deposited seabed floor due to the gradual loss of soil skeleton stiffness caused by the accumulation of pore pressure. The accumulation of pore pressure in the loose seabed is not infinite but limited by the liquefaction resistance line. The seabed soil at some locations could be reached to the full liquefaction state, becoming a type of heavy fluid with great viscosity. Residual liquefaction is a progressive process that is initiated at the upper part of the seabed floor and then enlarges downward. For waves with great height in shallow water, the depth of the liquefaction zone will be greatly overestimated if the Stokes wave theory is used. This study can enhance the understanding of the characteristics of the liquefaction process in a loosely deposited seabed under coastal shallow water and provide a reference for engineering activities.


2020 ◽  
Vol 110 (4) ◽  
pp. 1549-1566 ◽  
Author(s):  
Paolo Zimmaro ◽  
Chukwuebuka C. Nweke ◽  
Janis L. Hernandez ◽  
Kenneth S. Hudson ◽  
Martin B. Hudson ◽  
...  

ABSTRACT The 2019 Ridgecrest earthquake sequence produced a 4 July M 6.5 foreshock and a 5 July M 7.1 mainshock, along with 23 events with magnitudes greater than 4.5 in the 24 hr period following the mainshock. The epicenters of the two principal events were located in the Indian Wells Valley, northwest of Searles Valley near the towns of Ridgecrest, Trona, and Argus. We describe observed liquefaction manifestations including sand boils, fissures, and lateral spreading features, as well as proximate non-ground failure zones that resulted from the sequence. Expanding upon results initially presented in a report of the Geotechnical Extreme Events Reconnaissance Association, we synthesize results of field mapping, aerial imagery, and inferences of ground deformations from Synthetic Aperture Radar-based damage proxy maps (DPMs). We document incidents of liquefaction, settlement, and lateral spreading in the Naval Air Weapons Station China Lake US military base and compare locations of these observations to pre- and postevent mapping of liquefaction hazards. We describe liquefaction and ground-failure features in Trona and Argus, which produced lateral deformations and impacts on several single-story masonry and wood frame buildings. Detailed maps showing zones with and without ground failure are provided for these towns, along with mapped ground deformations along transects. Finally, we describe incidents of massive liquefaction with related ground failures and proximate areas of similar geologic origin without ground failure in the Searles Lakebed. Observations in this region are consistent with surface change predicted by the DPM. In the same region, geospatial liquefaction hazard maps are effective at identifying broad percentages of land with liquefaction-related damage. We anticipate that data presented in this article will be useful for future liquefaction susceptibility, triggering, and consequence studies being undertaken as part of the Next Generation Liquefaction project.


2009 ◽  
Vol 32 (1) ◽  
pp. 100803 ◽  
Author(s):  
L. D. Suits ◽  
T. C. Sheahan ◽  
Lei Fu ◽  
Gang Liu ◽  
Xiangwu Zeng

2012 ◽  
Vol 06 (04) ◽  
pp. 1250020 ◽  
Author(s):  
SIAU CHEN CHIAN ◽  
SANTANA PHANI GOPAL MADABHUSHI

In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Such uplift response of the buoyant structure is influenced by the soil it is buried in. In the case of a liquefiable soil deposit, the soil can lose its shear strength significantly in the event of an earthquake. If the soil liquefies fully, the buoyant structure can float towards the soil surface. However, a partly liquefied soil deposit retains some of its initial shear strength and resists the uplift. This paper discusses the different soil conditions and their influence on the uplift response of buoyant structures.


Sign in / Sign up

Export Citation Format

Share Document