Analysis of Chemical Action of Oxidants in Chemical Mechanical Polishing of SiC Crystal Substrate

2014 ◽  
Vol 1027 ◽  
pp. 213-216
Author(s):  
Su Fang Fu ◽  
Jian Guo Yao ◽  
Li Jie Ma ◽  
Jian Xiu Su

Chemical mechanical polishing (CMP) had been considered as the most practical and effective method of achieving an ultra-smooth and non-damage surface in manufacturing SiC crystal substrate. CMP slurry was one of the key factors of CMP technology. In this paper, through investigating the changes of several core factors to evaluate the performance of CMP, such as the material removal rate (MRR), surface roughness Ra, 3D surface profiler, etc., the influence of various slurry and its content on the polishing efficiency and surface finish quality had been studied. The research results showed that different oxidant had different chemical action mechanism, also affecting the stability of CMP slurry and surface quality of specimen; adding suitable an oxidant to slurry could effectively improve the CMP performance.

2015 ◽  
Vol 727-728 ◽  
pp. 244-247
Author(s):  
Zhu Qing Zhang ◽  
Kang Lin Xing

Through experimental study on the role of the free abrasive in chemical mechanical polishing, in this paper, four different types of abrasive which were chosen were used for the research of material removal rate(MRR) and surface quality of SiC single crystal . Finally ,Diamond abrasive which is considered was the most suitable for chemical mechanical polishing(CMP) abrasive of SiC Crystal Substrate. With diamond Particle polish pad polishing, it is draw a comparison result on the influence of the free abrasive and consolidation abrasive for the material removal rate and surface quality of 6H-SiC. The results showed that: the MRR is 140nm / min, the material removal rate if fixed abrasive chemical mechanical polishing(FA-CMP) more than three times that of traditional CMP, fixed abrasive chemical mechanical polishing pad, are involved in a large proportion of micro abrasive cutting, can greatly improve the material removal efficiency. And results from the test procedure, the FA-CMP surface has scratches after more technical problems for the polishing pad, the surface damage is relatively free of abrasive chemical mechanical polishing is more serious.


2009 ◽  
Vol 416 ◽  
pp. 354-359
Author(s):  
Jian Xiu Su ◽  
Yin Xia Zhang ◽  
Xi Qu Chen ◽  
Bin Feng Yang ◽  
Dong Ming Guo

The components of material removal in wafer Chemical mechanical polishing (CMP) was described qualitatively based on theory of corrosive wear. The value of each component was obtained by a series of wafer CMP experiments. According to analyzing the experiment results, some conclusions are obtained as follows. There is an optimum polish velocity in wafer CMP at a certain parameter. Under the optimum velocity, the balance of interaction between the mechanical action and the chemical action is reached and the material removal rate approaches maximum. The wafer CMP is a changeful and dynamic process. It cannot be obtained ideal effect of material removal by increasing the mechanical action or chemical action only. The MRR in wafer CMP mainly depends on the interaction result between the mechanical action and the chemical action and the interaction made by abrasives is a decisive part. These results provide a theoretical guide to further understanding the material removal mechanism in wafer CMP.


2006 ◽  
Vol 315-316 ◽  
pp. 561-565
Author(s):  
Hui Yuan ◽  
Xin Wei ◽  
H.W. Du ◽  
W. Hu ◽  
Wei Xiong

Lithium tantalite (LiTaO3) possesses a combination of unique electro-optical, acoustic, piezoelectric, pyroelectric and non-linear optical properties, making it a suitable material for applications in high frequency, broad width-band SAW and BAW components, filters in television receivers, etc. The surface quality of LiTaO3 wafers decides the performances of the devices. In this paper, the technique of chemical mechanical polishing (CMP) was used to polish LiTaO3 wafers. The influences of the polishing parameters on the CMP processes of LiTaO3 wafers were analyzed in detail based on the measurement of the material removal rate, surface roughness and topograph of the polished wafers in different polishing conditions.


2008 ◽  
Vol 600-603 ◽  
pp. 831-834 ◽  
Author(s):  
Joon Ho An ◽  
Gi Sub Lee ◽  
Won Jae Lee ◽  
Byoung Chul Shin ◽  
Jung Doo Seo ◽  
...  

2inch 6H-SiC (0001) wafers were sliced from the ingot grown by a conventional physical vapor transport (PVT) method using an abrasive multi-wire saw. While sliced SiC wafers lapped by a slurry with 1~9㎛ diamond particles had a mean height (Ra) value of 40nm, wafers after the final mechanical polishing using the slurry of 0.1㎛ diamond particles exhibited Ra of 4Å. In this study, we focused on investigation into the effect of the slurry type of chemical mechanical polishing (CMP) on the material removal rate of SiC materials and the change in surface roughness by adding abrasives and oxidizer to conventional KOH-based colloidal silica slurry. The nano-sized diamond slurry (average grain size of 25nm) added in KOH-based colloidal silica slurry resulted in a material removal rate (MRR) of 0.07mg/hr and the Ra of 1.811Å. The addition of oxidizer (NaOCl) in the nano-size diamond and KOH based colloidal silica slurry was proven to improve the CMP characteristics for SiC wafer, having a MRR of 0.3mg/hr and Ra of 1.087Å.


1999 ◽  
Vol 566 ◽  
Author(s):  
Uday Mahajan ◽  
Marc Bielmann ◽  
Rajiv K. Singh

In this study, we have characterized the effects of abrasive properties, primarily particle size, on the Chemical Mechanical Polishing (CMP) of oxide films. Sol-gel silica particles with very narrow size distributions were used for preparing the polishing slurries. The results indicate that as particle size increases, there is a transition in the mechanism of material removal from a surface area based mechanism to an indentation-based mechanism. In addition, the surface morphology of the polished samples was characterized, with the results showing that particles larger than 0.5 μm are detrimental to the quality of the SiO2 surface.


2005 ◽  
Vol 867 ◽  
Author(s):  
Suresh B. Yeruva ◽  
Chang-Won Park ◽  
Brij M. Moudgil

AbstractChemical mechanical polishing (CMP) is widely used for local and global planarization of microelectronic devices. It has been demonstrated experimentally in the literature that the polishing performance is a result of the synergistic effect of both the chemicals and the particles involved in CMP. However, the fundamental mechanisms of material removal and the interactions of the chemical and mechanical effects are not well understood. A comprehensive model for CMP was developed taking into account both the chemical and mechanical effects for monodisperse slurries. The chemical aspect is attributed to the chemical modification of the surface layer due to slurry chemistry, whereas the mechanical aspect is introduced by indentation of particles into the modified layer and the substrate depending on the operating conditions. In this study, the model is extended to include the particle size and pad asperity distribution effects. The refined model not only predicts the overall removal rate but also the surface roughness of the polished wafer, which is an important factor in CMP. The predictions of the model show reasonable agreement with the experimental observations.


Author(s):  
Dinc¸er Bozkaya ◽  
Sinan Mu¨ftu¨

The necessity to planarize ultra low-k (ULK) dielectrics [1], and the desire to reduce polishing defects leads to use of lower polishing pressures in chemical mechanical polishing (CMP). However, lowering the applied pressure also decreases the material removal rate (MRR), which causes the polishing time for each wafer to increase. The goal of this work is to investigate effects of pad porosity and abrasive concentration on the MRR.


2018 ◽  
Author(s):  
Zewei Yuan ◽  
Kai Cheng ◽  
Yan He ◽  
Meng Zhang

The high quality surface can exhibit the irreplaceable application of single crystal silicon carbide in the fields of optoelectronic devices, integrated circuits and semiconductor. However, high hardness and remarkable chemical inertness lead to great difficulty to the smoothing process of silicon carbide. Therefore, the research presented in this paper attempts to smooth silicon carbide wafer with photocatalysis assisted chemical mechanical polishing (PCMP) by using of the powerful oxidability of UV photo-excited hydroxyl radical on surface of nano-TiO2 particles. Mechanical lapping was using for rough polishing, and a material removal model was proposed for mechanical lapping to optimize the polishing process. Several photocatalysis assisted chemical mechanical polishing slurries were compared to achieve fine surface. The theoretical analysis and experimental results indicate that the material removal rate of lapping process decreases in index form with the decreasing of abrasive size, which corresponds with the model developed. After processed with mechanical lapping for 1.5 hours and subsequent photocatalysis assisted chemical mechanical polishing for 2 hours, the silicon carbide wafer obtains a high quality surface with the surface roughness at Ra 0.528 nm The material removal rate is 0.96 μm/h in fine polishing process, which is significantly influenced by factors such as ultraviolet irradiation, electron capture agent (H2O2) and acidic environment. This combined method can effectively reduce the surface roughness and improve the polishing efficiency on silicon carbide and other hard-inert materials.


Sign in / Sign up

Export Citation Format

Share Document