Design of Mobile Robot Remote Control

2014 ◽  
Vol 1030-1032 ◽  
pp. 1453-1456
Author(s):  
Ming Ming Bian ◽  
Li Jian Zhang ◽  
Lin Lin Bian

With the application of mobile robot in the industry, put forward higher requirements to the computer remote control technology. Remote control for mobile robots, the communication protocol between the host computer and the robot body and the control command design is presented in this paper. Visual C++ 6 programming language is used to complete the system. Dependability and practicability of system are proved by test.

2014 ◽  
Vol 1030-1032 ◽  
pp. 1457-1460
Author(s):  
Ming Ming Bian ◽  
Li Jian Zhang ◽  
Lin Lin Bian

The application of computer remote control technology become the future trend of the development of enterprises. In this paper, the use of international popular client / server structure and the socket and multi thread network data communication based on Visual C++ 6 programming language complete the system design, realizing the remote client to control the mobile robot.


Author(s):  
Daramola O. A. ◽  
Obe O. O. ◽  
Oriolowo A.

The use of Mobile Robots to interact with objects in remote locations has proved to be useful in areas not easily accessible or too dangerous for humans. Various means have been used to remotely operate or control Mobile Robots. These range from wired connection to Wireless connection like radio frequency signal and more recently internet controlled Mobile Robot using the TCP/IP protocol stack. However, the problem of remote control dependence on the Mobile Robot Platform or configuration has made it difficult to switch controllers between Mobile Robots. In this work, a portable IP based remote control system has been designed and implemented to remove the constraint imposed by the Mobile Robot's platform in choosing the control interface. The system developed was built on three loosely coupled components working together to ensure a high degree of Control interface portability. The Mobile Robot Gateway component was used to receive and send data from the Mobile Robot.


2010 ◽  
Vol 5 (1-2) ◽  
pp. 258-264
Author(s):  
Gyula Mester

The paper deals with the wireless sensor-based remote control of mobile robots motion in an unknown environment with obstacles using the Sun SPOT technology and gives the fuzzy velocity control of a mobile robot motion in an unknown environment with obstacles. When the vehicle is moving towards the target and the sensors detect an obstacle, an avoiding strategy and velocity control are necessary. We proposed the wireless sensor-based remote control of mobile robots motion in an unknown environment with obstacles using the Sun SPOT technology and a fuzzy reactive navigation strategy of collision-free motion and velocity control in an unknown environment with obstacles. The simulation results show the effectiveness and the validity of the obstacle avoidance behavior in an unknown environment. The proposed method have been implemented on the miniature mobile robot Khepera® that is equipped with sensors.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2014 ◽  
Vol 555 ◽  
pp. 199-208 ◽  
Author(s):  
Tomáš Kot ◽  
Petr Novák

This paper mentions some problems related to utilization of a head-mounted display (HMD) for remote control of mobile robots by a human operator and also presents a possible solution. Considered is specifically the new HMD device called Oculus Rift, which is a very interesting device because of its great parameters and low price. The device is described in the beginning, together with some of the specific principles of the Oculus 3D display. Then follows the design of a new graphical user interface for teleoperation, with main focus on visualization of stereoscopic images from robot cameras. Demonstrated is also a way how to display additional data and information to the operator. The overall aim is to create a comfortable and highly effective interface suitable both for exploration and manipulation tasks in mobile robotics.


1992 ◽  
Vol 337 (1281) ◽  
pp. 341-350 ◽  

Localized feature points, particularly corners, can be computed rapidly and reliably in images, and they are stable over image sequences. Corner points provide more constraint than edge points, and this additional constraint can be propagated effectively from corners along edges. Implemented algorithms are described to compute optic flow and to determine scene structure for a mobile robot using stereo or structure from motion. It is argued that a mobile robot may not need to compute depth explicitly in order to navigate effectively.


2021 ◽  
Author(s):  
Kunpeng Yang ◽  
Baofeng Zhang ◽  
Jinwei Zhang ◽  
Junchao Zhu

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


Volume 3 ◽  
2004 ◽  
Author(s):  
Kevin Firth ◽  
Brian Surgenor ◽  
Peter Wild

This paper describes an elective course in mechatronic systems engineering that is project based and team-oriented with hands-on learning. Working in small teams, students add electronic components to a mobile robot base and write the programs required to make the robot perform a series of tasks. Although the application of mobile robots as an educational tool in a mechatronics course is becoming the norm at many universities, the task based organization of the Queen’s mechatronics course is believed to have a number of novel features. The paper will review the pedagogy of the course, including aspects of the student workload, the interplay between teams, and the task based approach to marking and organization of the laboratories.


Sign in / Sign up

Export Citation Format

Share Document