Synthesis of Polymeric Schiff Base (PSB) Nanostructural Materials via Interfacial Polymerization

2014 ◽  
Vol 1033-1034 ◽  
pp. 963-969
Author(s):  
Na Dong ◽  
Yong Chun Tong ◽  
Qi Zhao Wang ◽  
Bi Tao Su

Nanostructural materials of polymeric Schiff base (PSB) have been selectively synthesized via interfacial polymerization (IP) by modifying the polymerization process. The effects of synthesizing methods, catalyst, the monomer concentration and the reaction time on the morphology of PSB nanostructural materials are investigated. The samples are characterized by TEM, FT-IR, UV-Vis, XRD, thermal analysis, and electrical conductivity measurement techniques. The results show that the PSB nanostructural materials, such as nanofilms and-rods, can be obtained via IP. Na+ and NH4+ ions act as shape-regulated agents. Na+ ion can control the growth of PSB nuclei along two-dimension to obtain PSB nanofilms and NH4+ is advantage to the growth of PSB nuclei along one-dimension to obtain PSB nanorods. It is also found that the polymer nanocrystals show high thermal stability and the iodine-doped polymer is a semiconductor material.

2019 ◽  
Vol 41 (4) ◽  
pp. 591-591
Author(s):  
Maha Abid Al Hussain Hameed Maha Abid Al Hussain Hameed ◽  
Maida Abdulaa Adnan Maida Abdulaa Adnan

A novel Schiff-base compound was synthesized by condensation of 4-hydroxybenzaldehyde and 4-aminoazobenzene. The prepared Schiff-base was converted to a polymer by reaction with formaldehyde and resorcinol. The two types of the prepared compounds were characterized with spectral techniques (FT-IR and 1H-NMR). The biological activity as antibacterial and antifungal was tested using the cork well diffusion method against some standard microorganisms, which indicate that these compounds showed good antimicrobial activity. HyperChem-8 program has been used to determine total energy, LUMO-HOMO, bond length and angles.


2013 ◽  
Vol 33 (9) ◽  
pp. 785-792 ◽  
Author(s):  
Kedir Mamma ◽  
Khalid Siraj ◽  
Nathan Meka

Abstract Polyaniline (PANI) in its emeraldine salt form was synthesized by chemical method from aniline monomer in the presence of HCl mixed with LiCl and ammonium persulfate as oxidant. Then, a portion of sample was dedoped with NH3 solution and another equal portion was separately postdoped with secondary dopants, such as H2SO4 and HClO4, respectively. Finally, the dried samples of PANI prepared in all its three different forms (emeraldine salt form, undoped emeraldine base, and the two secondary doped forms of PANI) were characterized by UV-visible spectroscopy, cyclic voltammetry (CV) techniques, Fourier transform infrared (FT-IR) spectroscopy, and electrical conductivity measurement. The cyclic voltammograms of PANI in its emeraldine base (PANI-EB) determined the electrochemical behavior and the growth mechanisms of the polymer. The FT-IR and UV-vis spectra confirmed the expected structural modification up on doping, undoping, and postdoping processes of the polymer. Their measured electrical conductivities were from 0.02 for undoped, 156 for primary doped form, and increasing from 158 to 257 S/cm for those secondary doped PANI. The influence of secondary doping on the electrical conductivity was also investigated from their spectroscopic data which shows dramatic rise in conductivity. The result also shows that secondary doping increased the π conjugation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Anurag Krishna ◽  
Amit Kumar ◽  
Rajiv Kumar Singh

Polypyrrole (PPy) nanoparticles were synthesized via microemulsion polymerization technique using sodium dodecyl sulfate as surfactant. Polyvinyl alcohol (PVA) was added as soft template during polymerization to modify the structure and properties of PPy nanoparticles. The synthesized materials namely, PVA-free and PVA added were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and DC electrical conductivity measurements. The sample synthesized in the presence of PVA has longer conjugation length as estimated from FT-IR investigation. Temperature dependence (4.2–300 K) of DC electrical conductivity measurement reveals that the PVA has a strong effect on the polymerization mechanism of PPy giving evidence of H-bonded assistance during polymerization leading to the synthesis of better ordered polymer. A growth mechanism has been proposed which explains the H-bonded assistance of PPy polymerization leading to enhanced structural ordering.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1428
Author(s):  
Xiaowei Fan ◽  
Xuguo Huai ◽  
Jie Wang ◽  
Li-Chao Jing ◽  
Tao Wang ◽  
...  

Graphene film has wide applications in optoelectronic and photovoltaic devices. A novel and facile method was reported for the reduction of graphene oxide (GO) film by electron transfer and nascent hydrogen produced between aluminum (Al) film deposited by magnetron sputtering and hydrochloric acid (HCl) solution for only 5 min, significantly shorter than by other chemical reduction methods. The thickness of Al film was controlled utilizing a metal detection sensor. The effect of the thickness of Al film and the concentration of HCl solution during the reduction was explored. The optimal thickness of Al film was obtained by UV-Vis spectroscopy and electrical conductivity measurement of reduced GO film. Atomic force microscope images could show the continuous film clearly, which resulted from the overlap of GO flakes, the film had a relatively flat surface morphology, and the surface roughness reduced from 7.68 to 3.13 nm after the Al reduction. The film sheet resistance can be obviously reduced, and it reached 9.38 kΩ/sq with a high transmittance of 80% (at 550 nm). The mechanism of the GO film reduction by electron transfer and nascent hydrogen during the procedure was also proposed and analyzed.


Author(s):  
Yunfeng Dong ◽  
Morten Stendahl Jellesen ◽  
Rune Juul Christiansen ◽  
Jesper Hovelskov ◽  
Jorgen Sundgren ◽  
...  

Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


2017 ◽  
Vol 41 (13) ◽  
pp. 5595-5604 ◽  
Author(s):  
Anuradha Anuradha ◽  
Shweta Kumari ◽  
Samaresh Layek ◽  
Devendra D. Pathak

A palladium nanocatalyst Fe3O4@CS-SB-Pd has been synthesized and characterized by FT-IR, XRD, XPS, FESEM, EDX, TEM, TGA, and ICP-AES analysis.


2016 ◽  
Vol 697 ◽  
pp. 327-330 ◽  
Author(s):  
Ke Shan ◽  
Xing Min Guo ◽  
Feng Rui Zhai ◽  
Zhong Zhou Yi

Y0.06Sr0.94Ti0.6Fe0.4O3-δ-YSZ composites were prepared by mixing Y, Fe co-doped SrTiO3 (Y0.06Sr0.94Ti0.6Fe0.4O3-δ known as YSTF) and 8 mol% Y2O3 stabilized ZrO2 (YSZ) in different weight fractions. The phase stability, phase compatibility, microstructure and mixed ionic-electronic conductivity of composites were investigated. Phase analysis by XRD showed no clearly detectable secondary phases. The electrical conductivity measurement on the YSTF-YSZ composites showed a drastic decrease in total electrical and ionic conductivities when more than 10 wt% of YSZ was used in the composites. The total electrical conductivity was 0.102 S/cm for Y0.06Sr0.94Ti0.6Fe0.4O3-δ and 0.043 S/cm for YSTF-20YSZ at 700 oC, respectively. The value at 700 oC is approximately 2.4 times higher than that of YSTF-20YSZ. The ionic conductivity of Y0.06Sr0.94Ti0.8Fe0.2O3-δ varies from 0.015S/cm at 700 oC to 0.02 S/cm at 800 oC, respectively. The value at 800°C is approximately 12.5 times higher than YSTF-20YSZ. The ion transference numbers of YSTF-YSZ composites vary from 0.14 to 0.28 at 800 °C.


Sign in / Sign up

Export Citation Format

Share Document