Development and Application of CAD Technology

2014 ◽  
Vol 1037 ◽  
pp. 461-463
Author(s):  
Yan Chen

Computer Aided Design (referred to as CAD) is the cross technology of product Design which is applied in engineering field by electronic Computer technology. With CAD technology application is more and more widely and popular, CAD technology is developing towards the direction of the open, integrated and intelligent. CAD technology is become more mature. Nowadays, the CAD technology in mechanical design can only handle numerical work, including calculation, analysis and drawing. The microcomputer platform 3D CAD software showed the trend of rapid development. This paper introduces the development and application of CAD technology, the developing characteristics of modern CAD technology, and explains the development trend of CAD technology.

2022 ◽  
Vol 2160 (1) ◽  
pp. 012060
Author(s):  
Haixiang Jiang ◽  
Yanhua Tang

Abstract The technical level and scale of machinery manufacturing industry are one of the most important factors to measure a country’s industrialization degree and comprehensive strength of national economy. In present, the rapid development of China has also undergone leapfrog changes in the development of machinery manufacturing and automation, however, the development trend of mechanical manufacturing and its automation has gradually developed from the previous manual work to the direction of network virtualization, machine miniaturization and industrial intelligence.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2016 ◽  
Vol 44 ◽  
pp. 1660208
Author(s):  
Nikolaos Gazis ◽  
David McGinnis ◽  
Stephen Molloy ◽  
Eugene Tanke ◽  
Carl-Johan Hardh ◽  
...  

The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be the world’s most powerful source of neutrons. The goal is to deliver neutrons to users in 2019 and reach full power sometime in the middle of the following decade. One of the key issues for ESS is to develop a strategy, along with the proper innovative tools, to efficiently communicate and smoothly collaborate between divisions and groups inside ESS and with its outside collaborators, so-called In-Kind Contributors (IKC). Technical requirements related to the scope to be delivered are among the most important technical information to be exchanged. This information exchange is facilitated by using a commercial requirements management database that is accessible through the web. The physics multidisciplinary needs are linked with the engineering integration through LinacLego, which is a tool that provides all updated lattice data for the accelerator. The lattice information is then gathered and utilized to control the physical positioning of the mechanical engineering components for the accelerator. The precision for this operation is provided by a dedicated mechanical design skeleton in a Computer Aided Design (CAD) environment. Finally, the realization of all these steps is supervised in detail and continuously evaluated. In this way the required ESS machine design can be delivered, both in terms of the engineering and the physics aspects.


Author(s):  
S. Minami ◽  
T. Ishida ◽  
S. Yamamoto ◽  
K. Tomita ◽  
M. Odamura

Abstract A concept for the initial stage of the mechanical design and its implementation in the computer-aided design (CAD) are presented. The process of decision making in design is: (1) determining an outline of the whole assembly using a 2-dimensional model that is easy to operate; (2) checking the outline using a 3-dimensional model in which it is easy to identify the spatial relationships; (3) determining details of its sub-assemblies or their components using the 2-dimensional model; and (4) checking the details using the 3-dimensional model. The CAD system must provide consistent relationships through all the steps. For that, following functions are implemented in our prototype system: (1) a 2D and 3D integrated model for consistency between 2- and 3-dimensional shapes, (2) a hierarchical assembly model with dimensional constraints for consistency within an assembly and their components, and (3) a check on constraints for consistency between shapes and designers’ intentions. As a result, the system can provide an environment well fitted to the designers’ decision making process.


2016 ◽  
Vol 4 ◽  
pp. 803-806 ◽  
Author(s):  
Mert Gürgen ◽  
Cenk Eryılmaz ◽  
Vasfi Emre Ömürlü

This article describes a sophisticated determination and presentation of a workspace volume for a delta robot, with consideration of its kinematic behavior. With the help of theoretical equations, optimization is performed with the aid of the stiffness and dexterity analysis. Theoretical substructure is coded in Matlab and three-dimensional (3D) data for delta robot are developed in computer-aided design (CAD) environment. In later stages of the project, both 3D and theoretical data are linked together and thus, with the changing design parameter of the robot itself, the Solidworks CAD output adapts and regenerates output with a new set of parameters. To achieve an optimum workspace volume with predefined parameters, a different set of robot parameters are iterated through design optimization in Matlab, and the delta robot design is finalized and illustrated in the 3D CAD environment, Solidworks. This study provides a technical solution to accomplish a generic delta robot with optimized workspace volume.


Author(s):  
Antor Mahamudul Hashan ◽  
Abdullah Haidari ◽  
Srishti Saha ◽  
Titas Paul

Due to the rapid development of technology, the use of numerically controlled machines in the industry is increasing. The main idea behind this paper is computer-aided design (CAD) based low-cost computer numerical control 2D drawing robot that can accurately draw complex circuits, diagrams, logos, etc. The system is created using open-source hardware and software, which makes it available at a low cost. The open-source LibreCAD application has been used for computer-aided design. Geometric data of a CAD model is converted to coordinate points using the python-based F-Engrave application. This system uses the Arduino UNO board as a signal generator of the universal g-code sender without compromising the performance. The proposed drawing robot is designed as a low-cost robot for educational purposes and aims to increase the student's interest in robotics and computer-aided design (CAD) skills to the next level. The drawing robot structure has been developed, and it meets the requirements of low cost with satisfactory experimental results.


2021 ◽  
pp. 1-38
Author(s):  
Vrushank Phadnis ◽  
Hamza Arshad ◽  
David Wallace ◽  
Alison Olechowski

Abstract With the availability of cloud-based software, ubiquitous internet and advanced digital modeling capabilities, a new potential has emerged to design physical products with methods previously embraced by the software engineering community. One such example is pair programming, where two coders work together synchronously to develop one piece of code. Pair programming has been shown to lead to higher quality code and designer satisfaction. Cutting-edge collaborative Computer-aided Design (CAD) technology affords the possibility to apply synchronous collaborative access in mechanical design. We test the generalizability of findings from the pair programming literature to the same dyadic configuration of work in CAD, which we call pair CAD. We performed human subject experiments with 60 participants to test three working styles: individuals working by themselves, pairs sharing control of one model instance and input, and pairs able to edit the same model simultaneously from two inputs. We compare the working styles on speed and quality, and propose mechanisms for our observations via interpretation of patterns of communication, satisfaction, and user cursor activity. We find that on a per-person basis, individuals were faster than pairs due to coordination and overhead inefficiencies. We find that pair work, when done with a single shared input, but not in a parallel mode, leads to higher quality models. We conclude that it is not Industry 4.0 technologies alone that influence designer output; choices regarding work process have a major effect on design outcomes, and we can tailor our process to suit project requirements.


2021 ◽  
Vol 233 ◽  
pp. 01164
Author(s):  
Lei Xu ◽  
Yuan Ni ◽  
Pengfei Han ◽  
Teng Zhang

From the aspect of bibliometrics and social network analysis, this paper studies the content characteristics and network evolution of service quality in China, form visual analysis charts and summarizes the research hotspots and development trends. Taking CNKI database as the data source, data mining and association analysis of sample data were carried out by means of manual judgment, keyword co-occurrence, bibliometric software BICOMB and Pajek. 872 related literatures were retrieved from 1999 to 2019, and the tendency of the number of published papers in each year was close to the inverted U type. This study expands the application fields of bibliometrics and social network software, and analyzes the development trend of service quality. The theoretical and practical research on service quality has achieved rapid development in the past 20 years. The library service quality and service quality satisfaction have always gotten a high level of attention, and the characteristics of network platforms for service quality have gradually become apparent because of the development of the Internet and computer technology.


Author(s):  
Bernie Bettig ◽  
Jami Shah

Abstract This paper describes the derivation of a consistent and comprehensive set of geometrical constraints for shape definition in Computer-Aided Design. These are needed to enable compatibility in parametric data exchange and to promote both standard capabilities and predictable solutions from constraint solving software kernels. The paper look at the mathematical basis for constraints present in the literature and elaborates about all types of constraints that can be described by the same mathematical basis. The approach considers all combinations of distance and angle constraints, on one point or all points of curves and surfaces, as well as transformations and mappings that are required in mechanical design.


2014 ◽  
Vol 513-517 ◽  
pp. 4290-4293
Author(s):  
Pan Guo ◽  
Ying Huang

With the rapid development of economic globalization and computer technology, bilingual teaching has become the development trend of college teaching. This paper aims to explore the reform road of the bilingual teaching complied with Higher Education Objectives. Take the course of introduction to computer for example, combined with the actual situation of our college bilingual teaching reform the solution to the problem and reform measures were proposed from the teaching content, teaching models, teaching means and so on. We believed it can give some reference value for the reform of bilingual teaching.


Sign in / Sign up

Export Citation Format

Share Document