Study on Pavement Performance of High Volume Reclaiming Asphalt Mixture

2014 ◽  
Vol 1081 ◽  
pp. 260-264
Author(s):  
Wei Rong Huang ◽  
Ming Tan

It was based on laboratory test, in order to study on the high temperature stability, water stability and low-temperature crack resistance of AC-16 reclaiming asphalt mixture with different proportion of old material, this test takes into account 9 kinds of these asphalt mixture. The results show, with the old material blending ratio increased, the high temperature stability of asphalt mixture changed for the better, water stability and low-temperature crack resistance deteriorated. The pavement performance meet the requirements of secondary road or less, when old material content is within 70%. The research results provide reference for the application of reclaiming asphalt mixture.

2021 ◽  
Vol 261 ◽  
pp. 02058
Author(s):  
Zheng Zhigang ◽  
He Yunwu ◽  
Wang Tao ◽  
Wei Hanxin ◽  
Liang Xiayi ◽  
...  

In order to evaluate the performance of the physical foaming warm-mix recycled asphalt mixture (WRAM), the hot mix plant recycling technology was adopted to develop AC-20 hot-mix recycled asphalt mixture (HRAM) and the WRAM of different reclaimed asphalt pavement (RAP) contents. The high temperature stability, water stability and low temperature crack resistance performance of the reclaimed asphalt pavement were evaluated. The results indicate that the physical foaming WRAM feature better high temperature stability, water stability and low temperature crack resistance compared to those of HRAM. With the increase in RAP contents, the high temperature stability of the physical foaming WRAM and HRAM rises notably but the water stability and low temperature crack resistance performance continues to drop.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1481 ◽  
Author(s):  
Xiaoliang Zhang ◽  
Ben Zhang ◽  
Huaxin Chen ◽  
Dongliang Kuang

Road construction consumes great amounts of high-grade natural resources. Using low-grade natural rocks or some solid wastes as substitute materials is a hot topic. Considering this, the feasibility of using low-grade granite aggregate, solid waste-based filler (desulphurization gypsum residues, DGR) and binder (waste tire rubber modified asphalt, RMA) simultaneously in asphalt mixtures has been fully investigated in this research. The commonly used base asphalt and limestone powder (LP) filler were control groups. Material characteristics of raw materials mainly including micro-morphology, functional group, mineral phase, chemical composition and thermal stability were first evaluated in order to recognize them. Four asphalt mixtures (two asphalt binder and two filler) were then designed by standard Superpave method. Finally, a detailed investigation into the pavement performance of asphalt mixtures was carried out. The moisture damage resistance and low-temperature crack resistance were detected by the changing rules of stability, strength and fracture energy, and the high-temperature stability and fatigue performance were determined by wheel tracking test and indirect tensile (IDT) fatigue test, respectively. Results suggested that RMA and DGR both showed positive effects on the low-temperature crack resistance and fatigue property of the granite asphalt mixture. DGR also strengthened moisture stability. The contribution of RMA on high-temperature deformation resistance of the granite asphalt mixture was compelling. It can offset the insufficiency in high-temperature stability made by DGR. A conclusion can be made that asphalt mixture prepared with granite, DGR and RMA possesses satisfactory pavement performances.


2011 ◽  
Vol 403-408 ◽  
pp. 656-659
Author(s):  
Yuan Yuan Sui ◽  
Zhong Da Chen

Asphalt mixture is often modified by adding modifier in order to improve the pavement performance such as high temperature stability, low temperature crack resistance and water stability. The author applies a new type of polyethylene modifying additive for asphalt mixture. The adding method of modifier is different from traditional method. Three modifiers were used in this study. It has been found that each modifier can improve the asphalt mixture performances. The author analyses the reason why modifying additive can improve asphalt mixture performances and give an advice to choose the type of modifying additive.


2011 ◽  
Vol 255-260 ◽  
pp. 3166-3170
Author(s):  
Li Ming Wang ◽  
Yi Qiu Tan ◽  
Zhen Wu Shi

Additives on low temperature compaction and performances of compacted mixtures, the author devised low temperature environment compaction test, and then, comparison tests of volume parameters, high temperature stability, low temperature crack resistance and water sensitivity were conducted. Tests results showed that the wax additives and the surface-active additive can significantly contribute to mixtures low-temperature compactibility. The wax additive helps to improve high temperature stability obviously, and has no significant contribution to low temperature crack resistance and water sensitivity. The surface-active additive directly reduces water sensitivity, the wax additive indirectly plays the role of reducing water sensitivity by increasing the density of mixture, and the foam additive has no obvious effect on the water sensitivity.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 599 ◽  
pp. 234-238 ◽  
Author(s):  
Liang Liang Tu ◽  
Jun Zheng ◽  
Shao Peng Wu

Grey relational analysis (GRA) is an important data handling techniques. In this paper, combining the characteristics of asphalt mixture, the method of GRA is applied to the study of coarse grading. The high temperature stability, low temperature cracking resistance and water stability of asphalt mixture with different grading were evaluated in the laboratory. The results showed that OGFC-25 gradation apply to asphalt mixture that demand high temperature stability. Similarly, ATB-25 gradation benefit low temperature performance and SUP-25 benefit water stability.


2011 ◽  
Vol 97-98 ◽  
pp. 321-326 ◽  
Author(s):  
Xiao Hua Zhao ◽  
Xie Dong Zhang

Based on the feasibility analysis of the chloride’s released capability, a certain proportion of the chloride was added into the ordinary asphalt mixture to form a new chloride-stored asphalt mixture. The mixing proportion was determined and its pavement and anti-icing performance were analyzed. The research indicates that: the stored chloride has good releasability. The new asphalt mixture not only has better high temperature stability and low temperature anti-bending capability than the ordinary one, but could also remove the road ice effectively.


2014 ◽  
Vol 919-921 ◽  
pp. 1079-1084 ◽  
Author(s):  
Sen Han ◽  
Dong Yu Niu ◽  
Ya Min Liu ◽  
De Chen ◽  
Deng Wu Liu

The types and contents of styrene-butadiene-styrene (SBS) modifier are two important factors of SBS modified asphalt mixtures. Nowadays, SBS are extensively utilized to modified asphalt in order to improve the performance of the flexible pavement. The objective of this study is to determine a best selection of types and contents of SBS modifier, which can improve high-temperature stability; low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture. The mixtures with four types of SBS (Linear A, Linear B, Star A, Star B) and the different contents of each type SBS including Linear SBS of 0%, 3%, 4%, 4.5% and Star SBS of 0%, 3%, 3.5%, 4%, were evaluated for the pavement performance of them under laboratory conditions. Wheel tracking test, beam bending test and freeze-thaw tensile strength test were chosen and carried out to determine high-temperature stability, low-temperature anti-cracking performance and the moisture susceptibility respectively. The laboratory testing results indicate that Star SBS show the more effective effects than Linear SBS to improve the high-temperature stability, low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture, and the optimum content of SBS can also play a key role the improvement of the pavement performance.


2011 ◽  
Vol 287-290 ◽  
pp. 978-981 ◽  
Author(s):  
Biao Ma ◽  
Jun Li ◽  
Ren Wei Liu ◽  
Jin Ma

Mixing the composite phase change material (CPCM) to asphalt mixture is a new way to solve the worldwide problem of the low-temperature cracking and high temperature rutting of the asphalt pavement. Asphalt mixture with CPCM can remain in the ideal working temperature range for a relatively long time. This paper analyzes the influence of the contents of CPCM on its road performance by laboratory testing. The study shows that mixing CPCM to asphalt mixture had little effect to the optimal asphalt content. For CPCM prepared by polymer shape-stabilized method, the high-temperature stability and the water stability of asphalt mixture increases firstly and then decreases the low-temperature anti-cracking stability decreases firstly and then increases with the increasing of CPCM. For CPCM prepared by carrier-adsorbed packaging process, the high-temperature stability decreases, low-temperature anti-cracking stability decreases firstly and then increases, the water stability increases firstly and then decreases with increasing of CPCM. The results indicate that CPCM has significant influences on its road performance. The optimal content of CPCM is around 0.3%.


2011 ◽  
Vol 374-377 ◽  
pp. 1347-1350
Author(s):  
Feng Chun Zhang

according to the road use functions, the article for asphalt mixture of high temperature stability, the low temperature crack performance is analyzed, the results for further study on the asphalt mixture has important significance.


Sign in / Sign up

Export Citation Format

Share Document