The Effect and Strategy of Global Warming

2015 ◽  
Vol 1092-1093 ◽  
pp. 1625-1628
Author(s):  
Le Hui Huang ◽  
Miao Miao Li

Global warming is one of the biggest environment challenges in front of human today. The earth’s atmosphere and clouds have the function of insulation, making the earth maintain a certain temperature in the night. The earth is in a serious greenhouse effect due to increasing pollution. The paper explains how to deal with and curb global warming.

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 731-742 ◽  
Author(s):  
D Lal ◽  
A J T Jull

Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lai and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 1991a). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.


2020 ◽  
Vol 11 (2) ◽  
pp. 89-95
Author(s):  
Omo Rusdiana ◽  
Syidik Fahmi

Global warming is a gradual increase in the average temperature of the Earth’s atmosphere caused by the increased volumes of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Greenhouse gases is trapped inside the atmosphere and caused UV radiation difficulty passing through Earth’s atmosphere, a processed is often referred to as the greenhouse effect. Reclamation and revegetation activities were expected could decrease the greenhouse effect. The aims of the research is to estimate total carbon stock in Pine Forest age 2005 or 11 years and 2012 or 4 years, and also to compare the result with former research in post mining revegetation site PT Holcim Indonesia Tbk. Biomass measurement of trees, poles, and saplings is conducted with non-destructive methods meanwhile biomass measurements of understorey, litter, and necromassa used destructive methods. The result showed that the value of biomass and carbon stock on the 2005 pine stand is acquired 75.31 tons/ha and 35.39 tons/ha. The value of the biomass and carbon stock on the 2012 pine stand is acquired 12.72 tons/ha and 5.98 ton/ha or increased from the previous year's measurement. Increasing of biomass content and carbon stocks is caused several factors such as increasing of diameter increment dan site quality. Keywords: biomass, carbon, reclamation


2020 ◽  
Vol 635 ◽  
pp. A156
Author(s):  
K. G. Strassmeier ◽  
I. Ilyin ◽  
E. Keles ◽  
M. Mallonn ◽  
A. Järvinen ◽  
...  

Context. Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in front of the Sun. Aims. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Methods. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope in its polarimetric mode in Stokes IQUV at a spectral resolution of 130 000 (0.06 Å). In particular, the spectra cover the red parts of the optical spectrum between 7419–9067 Å. The spectrograph’s exposure meter was used to obtain a light curve of the lunar eclipse. Results. The brightness of the Moon dimmed by 10.m75 during umbral eclipse. We found both branches of the O2 A-band almost completely saturated as well as a strong increase of H2O absorption during totality. A pseudo O2 emission feature remained at a wavelength of 7618 Å, but it is actually only a residual from different P-branch and R-branch absorptions. It nevertheless traces the eclipse. The deep penumbral spectra show significant excess absorption from the Na I 5890-Å doublet, the Ca II infrared triplet around 8600 Å, and the K I line at 7699 Å in addition to several hyper-fine-structure lines of Mn I and even from Ba II. The detections of the latter two elements are likely due to an untypical solar center-to-limb effect rather than Earth’s atmosphere. The absorption in Ca II and K I remained visible throughout umbral eclipse. Our radial velocities trace a wavelength dependent Rossiter-McLaughlin effect of the Earth eclipsing the Sun as seen from the Tycho crater and thereby confirm earlier observations. A small continuum polarization of the O2 A-band of 0.12% during umbral eclipse was detected at 6.3σ. No line polarization of the O2 A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of ≈0.2% on the degree of line polarization during transmission through Earth’s atmosphere and magnetosphere.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Michal Zgrzebnicki ◽  
Nikola Krauze ◽  
Andżelika Gęsikiewicz-Puchalska ◽  
Joanna Kapica-Kozar ◽  
Ewa Piróg ◽  
...  

Greenhouse effect is responsible for keeping average temperature of Earth’s atmosphere at level of about 288 K. Its intensification leads to warming of our planet and may contribute to adverse changes in the environment. The most important pollution intensifying greenhouse effect is anthropogenic carbon dioxide. This particular gas absorbs secondary infrared radiation, which in the end leads to an increase of average temperature of Earth’s atmosphere. Main source of CO2 is burning of fossil fuels, like oil, natural gas, and coal. Therefore, to reduce its emission, a special CO2 capture and storage technology is required. Carbonaceous materials are promising materials for CO2 sorbents. Thus multiwalled carbon nanotubes, due to the lack of impurities like ash in activated carbons, were chosen as a model material for investigation of acid treatment impact on CO2 uptake. Remarkable 43% enhancement of CO2 sorption capacity was achieved at 273 K and relative pressure of 0.95. Samples were also thoroughly characterized in terms of texture (specific surface area measurement, transmission electron microscope) and chemical composition (X-ray photoelectron spectroscopy).


1910 ◽  
Vol 30 ◽  
pp. 529-550
Author(s):  
John Aitken

The return of Halley's Comet in May of this year gave rise to much speculation as to its possible effects on the earth. As it was expected that the earth would pass through the tail of the comet when the comet passed between us and the sun, many observations were arranged for in order to see if the tail, whatever it was composed of, had any effect on the earth or on its atmosphere. If the tail was composed of matter in any form, gaseous, or fine solid or liquid particles, then it seemed possible to get some evidence of its presence in the atmosphere; or if the tail was composed of electrons, then these would disturb the electrical condition of the atmosphere, and also the magnetic condition of the earth.


It may be thought that radio astronomical measurements made on the earth are not subject to the influence of the atmosphere and ionosphere to any great extent and that consequently there is no demand for measurements from earth satellites or other space stations. Unfortunately this is not the case and certain measurements from outside the earth’s atmosphere are very much desired. The radio spectrum so far explored extends from a low frequency limit in the 10 to 20 Mc/s band, to an upper limit in the millimetre waveband. In the millimetre band the limitation to the extension of the spectrum arises from absorption bands in the atmosphere, whereas at low frequencies the extension is limited by absorption and disturbances in the ionosphere. In this paper some examples will be given of the need to overcome these obstacles.


2012 ◽  
Vol 3 (2) ◽  
pp. 1287-1320
Author(s):  
E. Simoncini ◽  
N. Virgo ◽  
A. Kleidon

Abstract. It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important both for understanding the role that life plays in the Earth system, and for its potential role in the detection of life on exoplanets. Here we present a methodology for assessing the strength of the biogeochemical cycling processes that drive disequilibrium in planetary systems. We apply it to the simultaneous presence of CH4 and O2 in Earth's atmosphere, which has long been suggested as a sign of life that could be detected from far away. Using a simplified model, we identify that the most important property to quantify is not the distance from equilibrium, but the power required to drive it. A weak driving force can maintain a high degree of disequilibrium if the residence times of the compounds involved are long; but if the disequilibrium is high and the kinetics fast, we can conclude that the disequilibrium must be driven by a substantial source of energy. Applying this to Earth's atmosphere, we show that the biotically-generated portion of the power required to maintain the methane-oxygen disequilibrium is around 0.67 TW, although the uncertainty in this figure is about 50% due to uncertainty in the global CH4 production. Compared to the chemical energy generated by the biota by photosynthesis, 0.67 TW represents only a very small fraction and, perhaps surprisingly, is of a comparable magnitude to abiotically-driven geochemical processes at the Earth's surface. We discuss the implications of this new approach, both in terms of enhancing our understanding of the Earth system, and in terms of its impact on the possible detection of distant photosynthetic biospheres.


Protecting the Earth's atmosphere has become a concern on the agenda of all mankind, regardless of how one state or another is involved in resolving or worsening of this serious problem. States are facing global warming, generating a triple dilemma. First, there is the dilemma of short-term and predictable costs to winning long-term and less predictable benefits. The second refers to some specific segments, such as oil companies and industrial workers bearing the costs, while most of the benefits are distributed in domestic and world society internaţional. The third dilemma concerns the collective goods between states, ie the benefits are shared globally and the costs to be borne by each state. The international system must face both the conflicts, whose number is increasing, and the complexity of the global management. As demands on the environment continues to grow, this problem grows and the two reasons which contribute to this pressure are: economic development and a greater number of people. Pollution as a global issue is the prerogative of our century, especially in the last thirty years when the population of the planet has greatly increased (from 5 to 7 billion) and the environment has been damaged by pollution, erosion and other phenomena due to the willingly or unwillingly actions of mankind. Compared to 400 years ago, as a result of improved living and health standards, and also due to a high percentage of the birth rate, the world population has increased about 10 times, and for the year 2050 is expected to reach about 10.5 billion. How human action influences the soil and the earth's atmosphere can take many forms and existed since humans began using fire for agriculture, heating and cooking food and especially during the industrial revolution that began at the end of the eighteenth century and early nineteenth century, when air pollution has started to become a major problem. Currently, one of the most serious problems caused by air pollution is global warming produced by the accumulation in the atmosphere large amounts of carbon dioxide and other gases, known as greenhouse gases. They reduce the heat dissipated from Earth but does not block the sun radiation. Because of this greenhouse effect is expected that global temperature increase of 1.4 ° C to 5.8 ° C by 2100, a process that has already begun to change climate patterns, affecting agricultural production, changing the distribution of animals and plants and increasing sea level. To combat the problems posed by pollution worldwide and reducing pollution, an important role it plays on the international stage the policies adopted by governments and international bodies, international understanding and not least nongovernmental groups formed at local, national and international.


Sign in / Sign up

Export Citation Format

Share Document