scholarly journals Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12

2015 ◽  
Vol 1094 ◽  
pp. 339-342
Author(s):  
Chao Xun Liu ◽  
Shi Hong Lu ◽  
Wei Miao ◽  
Pan Feng Song ◽  
Tian Rui Wu

Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and micro hardness) with different USP process parameters were measured. The research proposes that radius of curvature of shot peened sheet increases with time and electric current decreasing, while increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical micro hardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.

Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 238 ◽  
Author(s):  
Gang An ◽  
Ren-jing Liu ◽  
Guang-qiang Yin

In order to study the effect of nitriding or shot peening on the surface modification and fatigue properties of martensitic stainless-steel Custom 465, the residual stress and micro-hardness of the strengthened layer are determined by X-ray and micro-hardness tester, respectively. The up-and-down method is used to measure the rotational bending fatigue strength at 1 × 107 cycles, and the fatigue fracture characteristic is observed by scanning electron microscopy. The relationship between surface residual stress and internal fatigue limit of surface strengthening treatment is discussed. Results show that nitriding or shot peening surface strengthening layer forms a certain depth of compressive residual stress, where in the surface compressive residual stress of the nitrided specimens is greater than the shot peened specimens. The micro-hardness of the nitrided or shot peened surface strengthening layer is significantly improved, where in the surface micro-hardness of nitriding specimens are higher than shot peening specimens. The nitriding or shot peening surface strengthening can significantly improve the fatigue limit of Custom 465, wherein the fatigue limits of nitrided and shot peened surface strengthened specimens are 50.09% and 50.66% higher than that of the un-surface strengthened specimens, respectively. That is, the effect of the two strengthening methods on fatigue limit is not very different. The fracture characteristics show that the fatigue crack of the un-surface strengthened specimens originates from the surface, while the fatigue crack of surface strengthened specimens originates from the subsurface layer under the strengthened layer. The relationship between the internal fatigue limit and the surface residual stress of the surface strengthened specimen can be used as a method for predicting the fatigue limit of the surface strengthened specimens.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7064
Author(s):  
Ewa Sudoł ◽  
Marcin Małek ◽  
Mateusz Jackowski ◽  
Marcin Czarnecki ◽  
Cezary Strąk

The safety of the use of construction facilities should be a priority in today’s busy world, where it is not difficult to get involved in an accident. Most of them, due to the pace at which we live today, are caused by slips, trips, and falls. This work presents a detailed analysis of the resistance of ceramic floors to these events, taking into account the surface properties and conditions (dry/wet), which, as presented, have a significant impact on the final slip resistance values. This study also investigates the relationship between surface roughness and anti-slip properties. According to the obtained results, it can be concluded that the surface roughness is not the main determinant of slip resistance, and the final value of it is influenced by many components that should be considered together and not be neglected when designing the surface finish. Furthermore, based on experimental measurements, it can be noted that the highest slip resistance in both wet and dry conditions showed the unglazed tiles with lapatto finish and the glazed tiles without any extra finish.


Sign in / Sign up

Export Citation Format

Share Document