Application Research of Hot Stamping Base on the Forming History

2015 ◽  
Vol 1095 ◽  
pp. 698-703
Author(s):  
Ning Ma ◽  
Ke Su Liu ◽  
Quan Kun Liu ◽  
Yu Jie Ma

The hot stamping process and process parameters are investigated for a model of a B-pillar outer plate by numerical simulation. The feasibility of hot stamping forming process and its parameters are analyzed. The effectiveness of numerical simulation and the accuracy of hot stamping forming process and its parameters for B-pillar outer plate are proved by the hot stamping experiment and tensile tests. Three models are designed to analyze the effect of B-pillar in the vehicle side impact. It shows that hot stamping technology has the advantages in the field of lightweight and improving impact resistance. Through the research of the historical process of hot forming part, the residual strain characteristics of hot stamping parts is analyzed, the produce and mechanism of residual strain is explained, and the application method based on the forming history of hot stamping technology is provided.

2010 ◽  
Vol 129-131 ◽  
pp. 390-394
Author(s):  
Cheng Xi Lei ◽  
Zhong Wen Xing ◽  
Hong Ya Fu

The numerical simulation of hot-stamping process was carried out for UHSS square-cup parts, and the influence of dies temperature on the hot-stamping process was anlysised. Besides, through the microstructure analysis and mechanical properties testing of the formed parts, effects of dies temperature on microstructures and mechanical properties of hot-stamping square-cup parts were obtained. The experiment and simulation results showed that the mechanical properties of the UHSS are strongly dependent on the temperature, so the dies temperature is one of the most important parameters that have to be taken into account in designing the hot-forming dies and the hot-forming process.


2013 ◽  
Vol 33 (2) ◽  
pp. 181-190
Author(s):  
Aleksey D. Drozdov ◽  
Rasmus Klitkou ◽  
Jesper de C.Christiansen

Abstract To evaluate the influence of crystalline structure on the mechanical behavior of polypropylene (PP), uniaxial tensile cyclic tests with a mixed program (oscillations between fixed maximum strains and the zero minimum stress) were performed on isotactic PP (iPP) manufactured by the Ziegler-Natta catalysis method, metallocene catalyzed PP (mPP), and annealed mPP. Although the stress-strain diagrams of iPP and mPP under tension are quite similar, their responses under unloading differ markedly. The residual strain (measured as the strain under retraction down to the zero stress) of iPP strongly exceeds that of non-annealed mPP, and annealing of mPP increases this difference. To rationalize these findings, constitutive equations are developed in cyclic viscoelasticity and viscoplasticity of semicrystalline polymers, and adjustable parameters in the stress-strain relations are found by fitting the observations. The ability of the model to describe the observed phenomenon and to predict the mechanical response in multi-cycle tensile tests, with various deformation programs, is demonstrated by numerical simulation.


2021 ◽  
Author(s):  
Hui Wang ◽  
Lizi Liu ◽  
Haibao Wang ◽  
Jie Zhou

Abstract With the development of lightweight vehicles, tailor welded blanks (TWBs) are increasingly used in the automotive industry. Splitting and wrinkling are the main defects during the deep drawing of TWBs. A new method to control the forming defects was introduced in the forming process of TWBs in this study. The microstructure and mechanical properties of TWBs were characterized through metallography and tensile tests. Finite element modelling of an automobile rear door inner panel made of TWBs was built to analyse deep drawing. Edge cutting and notch cut were introduced in the drawing to deal with forming defects and reduce the number of stamping tools. The minimum distance between the material draw-in and trimming lines, thinning index and thickening index were defined as the measurable index to analyse the numerical results. Orthogonal experiment, numerical simulation and multiobjective experiment were utilised to optimize the forming parameters. The proposed method and optimised parameters were verified through experiments. The experimental results are basically consistent with the numerical simulation. Results demonstrate that the proposed method can provide some guidance for controlling the defects in deep drawing of TWBs for complex shape automotive panel.


2014 ◽  
Vol 1063 ◽  
pp. 198-201
Author(s):  
Yong Liu ◽  
Zhong Xiang Gui ◽  
Zhi Gao Huang ◽  
Yi Lin Wang ◽  
Yi Sheng Zhang

Hot stamping parts made of boron steel have been widely used in automotive industry. In forming process of a hot-stamped vehicle bumper, non-uniform contact and friction between the boron steel and tools caused the bumper groove sidewalls excessive thinning or crack. Increasing stamping speed could improve the non-uniformity of blank temperature field and reduce the temperature difference. Influence of the stamping speed and the friction on the forming quality were studied by numerical simulation. The results showed that increasing the stamping speed within a certain range or using reasonable lubrication could reduce the thickness reduction of the sidewall. A bumper without cracking was obtained with a high stamping speed of 300 mm/s and a certain lubrication method.


1999 ◽  
Vol 601 ◽  
Author(s):  
P. Impiö ◽  
J. Pimenoff ◽  
H. Hänninen ◽  
M. Heinäkari

AbstractThis paper examines the possibilities of manufacturing large-scale aluminium sandwich structures using superplastic forming. The materials tested were Mg-alloyed production quality aluminium (Al 5083-0, Al 5083-H321) and Aluminium 1561. Tensile tests at elevated temperatures were performed in order to establish the suitability of the test materials for superplastic forming. The microstructural changes in the test material specimens were examined. Thereafter numerical simulation of the Al 5083-0 forming process was conducted based on the tensile test results. The numerical simulation results were subsequently used to estimate forming parameters and the feasibility of manufacturing large-scale structures by superplastic forming.The results indicate that higher strain can be reached at higher temperatures for the test materials. Aluminium alloy 1561 exhibited the largest elongation to fracture and Al 5083-H321 the smallest. Strain appeared to be temperature dependent but not much affected by the strain rate. Metallographic examination clarified that Al-5083-0 and AI-5083-H321 showed susceptibility for cavity forming whereas Aluminium 1561 formed relatively few voids. The numerical simulation indicated that Al 5083-0 can be superplastically formed using relatively low forming pressure (0.9 – 1.4 bar).


2021 ◽  
Vol 30 (4) ◽  
pp. 2732-2741
Author(s):  
Shixin Peng ◽  
Jie Zhou ◽  
Qiuyun Wang ◽  
Mengmeng Zhang ◽  
Qian Shu ◽  
...  

2008 ◽  
Vol 33-37 ◽  
pp. 1377-1382 ◽  
Author(s):  
Halida Musha ◽  
Mamtimin Gheni ◽  
Buhalqam

In this paper, the iBone (Imitation Bone) model which is coupled with Turing reaction-diffusion system and FEM, is used. The numerical simulation of bone forming process by considering the osteoclasts and osteoblasts process are conducted. The bone mass is increased with increase of the initial load value, then fibula and femur bones are obtained respectively by keeping the required bone forming value. The new S shape wave of metal welded bellow of mechanical seal are designed based on the the optimization results through this method. The S shape and V shape both were analyzed with FEM method. The same boundary conditions were given for two types of wave. The results are shown that the stresses mainly concentrated on the welded area. It is interesting that the value of the stresses of the two types of wave basically same. However, compressibility of the two types of wave is very different at the same computation stage. The compressibility of S shape wave was higher than V shape.


Author(s):  
Hairui Wang ◽  
Chunfang Guo ◽  
Yujie Li ◽  
Yahua Liu ◽  
Minjie Wang ◽  
...  

With the advantage of high adaptability, Miura-origami structure with curvature shows various engineering applications such as a sandwich between two stiff facings with curvature requirements and structural support to form a circular tube. In this research, a forming method of polymer circular tube with single-curved surface origami expressed by five parameters was established and its corresponding theory was solved considering forming rationality in actual manufacturing. The components of circular tube were fabricated by the vacuum forming process and then spliced together. We conducted numerical simulation to analyze the structural performance of the tube with five parameters and shown that these parameters have a great influence on energy absorbed performance. Finally, a male mold of a part with Arc Miura-origami structure was designed and fabricated. The parts with Arc Miura-origami were manufactured using vacuum forming process and then spliced and bonded together into a two-layer tube. This research may provide a method to design and fabricate Miura-origami structure with high efficiency and quality.


Sign in / Sign up

Export Citation Format

Share Document