Effect of Addition of Some Grain Refiners to Zinc-Aluminum 22, ZA22, Alloy on its Grain Size, Mechanical Characteristics in the Cast and after Pressing by the Equal Channel Angular Pressing, ECAP

2015 ◽  
Vol 1105 ◽  
pp. 172-177 ◽  
Author(s):  
Adnan I.O. Zaid ◽  
Jehad A.S. AlKasasbeh ◽  
S.M.A. Al-Qawabah

In this paper, the effect of addition of some grain refiners namely: molybdenum, titanium and titanium+boron to zinc-aluminum 22%, ZA22, alloy on its microstructure and mechanical characteristics is investigated in two conditions one in the cast condition and the other after pressing by the equal channel angular pressing, ECAP. Recently the ECAP process has been used to produce severe plastic deformation. It was found that addition of any of these elements to ZA22 alloy resulted in grain refinement of its structure both in the cast and after pressing by the ECAP conditions, being more pronounced after pressing by ECAP. The maximum decrease was %. Furthermore, it resulted in enhancement of its mechanical strength at, indicating softening of the alloy. Regarding the effect on its hardness, it decreased by th addition of either Mo or Ti+B. at any rate of Mo addition.

2010 ◽  
Vol 638-642 ◽  
pp. 1934-1939 ◽  
Author(s):  
Y.B. Chun ◽  
S.H. Ahn ◽  
D.H. Shin ◽  
S.K. Hwang

Recent advances in the severe plastic deformation technique have shown that effective refinement of the microstructure can be achieved in pure metals as well as in alloys. Among the various methods of severe plastic deformation, equal channel angular pressing has been the subject of numerous research works. Since the grain refining effect of this technique appears to reach a peak at a level of approximately 200 nm further microstructural changes are sought—deformation at a cryogenic temperature being one of the candidate routes. In the present study, we opted to combine equal channel angular pressing and low temperature plastic deformation to refine the microstructure of commercially pure V. The starting microstructure consisted of equiaxed grains with an average size of 100 micrometers. This microstructure was refined to a 200 nm thick lamellar microstructure by 8 passes of equal channel angular pressing at 350°C. The lamellar thickness was further reduced to 140 nm upon subsequent cryogenic rolling, which resulted in room temperature yield strength of 768 MPa. In the specimens, recrystallization annealed at 850°C, the grain size reached 1000 nm or larger, and the yield strength obeyed the Hall-Petch relationship with that grain size. The tensile elongation value, which was low and insensitive to the grain size in the as-deformed state, increased significantly up to 43% with the recrystallization annealing.


2006 ◽  
Vol 118 ◽  
pp. 431-436
Author(s):  
Il Ho Kim ◽  
S.I. Kwun

The formation behavior of γ″(Ni3Nb) precipitates in IN 718 alloy before and after ECAP(equal channel angular pressing) was investigated by microstructural observation and the hardness test. For the alloy examined before ECAP, the γ″ precipitates were formed only after aging treatment at 720, whereas after ECAP, the γ″ precipitates were formed at the aging temperatures of both 600 and 720. 600 is normally too low a temperature for γ″ precipitates to be formed in commercial IN 718 alloy, however, they were able to be formed due to severe plastic deformation by ECAP. It was found that the ECAP process changed the formation behavior of the γ″ precipitates in IN 718 alloy.


2015 ◽  
Vol 813-814 ◽  
pp. 161-165
Author(s):  
M. Sadhasivam ◽  
T. Pravin ◽  
S. Raghuraman

The need for super-plasticity and high strength leads to the development of Severe Plastic Deformation technique. The strength of the material is directly dependent upon the grain size of the material. So, there is a need for producing Ultra-Fine Grain microstructure (UFG). UFG material is the material with very small grain size in the range of sub-micrometre. Application of severe plastic deformation, imparts extremely high strain. Equal channel angular pressing (ECAP) is a severe plastic deformation process in which the metal specimen is pressed through an angular channel of equal cross section. The material is subjected to shear deformation and strain is imparted in the specimen. Geometric parameters such as channel angle and corner angle play a major role in grain refinement. Aluminium (Al) specimens are subjected to undergo severe plastic deformation. Since, the strength of Al is not high, other materials are added in order to enhance its mechanical properties by matrix work hardening. Copper (Cu) along with Al shows increase in its strength and also in hardness. An attempt is made with Aluminium and copper, blended in the ratio 95:5 by weight with the main objective to study the Tensile strength, Hardness and Percentage Elongation properties of the specimen.


2017 ◽  
Vol 735 ◽  
pp. 29-33
Author(s):  
Adnan I.O. Zaid

Equal channel angular pressing, ECAP, is relatively a recent severe plastic deformation process which is carried out on materials to grain refine their structure. In this paper, the effect of addition of Mo to ZA22 on the maximum pressing force and the work consumed after the ECAP process is investigated and the obtained results are presented and discussed.


2019 ◽  
Vol 803 ◽  
pp. 22-26
Author(s):  
G.K. Manjunath ◽  
K. Udaya Bhat ◽  
G.V. Preetham Kumar

In the present work, Al-Zn-Mg alloy having highest zinc content was deformed by one of the severe plastic deformation (SPD) technique, equal channel angular pressing (ECAP) and effect of ECAP on the microstructure evolution and the wear properties were studied. ECAP was performed in a split die and the channels of the die are intersecting at an angle of 120º. ECAP was attempted at least possible temperature and the alloy was successfully ECAPed at 423 K. Below this temperature samples were failed in the first pass itself. After ECAP, significant drop in the grain size was reported. Also, ECAP leads to significant raise in the microhardness of the alloy. Predominantly, after ECAP, upsurge in the wear resistance of the alloy was noticed. To figure out the response of ECAP on the wear properties of the alloy; worn surfaces of the wear test samples were analyzed in SEM.


ROTASI ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 41
Author(s):  
Rusnaldy Rusnaldy ◽  
Norman Iskandar ◽  
Muhammad Khairul Rais ◽  
Wisnu Tri Erlangga

In current study, Equal Channel Angular Pressing (ECAP) process was applied to pure aluminium rod. The effect of the number of passes on hardness and electrical conductivity ECAP samples was investigated. The dimensions of ECAP die for 12 mmm diameter workpieces are designed with intersect angle of 120o. The experiments were carried out by using samples cut from an ingot and a rod and machined to a size of 12 mm in diameter and 50 mm in length. The workpiece was pressed into the ECAP die up to 7 passes at room temperature.After deformation, all samples were subjected to a hardness test, an electrical conductivity test and for optical microscope study. The hardness measurement of the ECAP samples suggested that enhanced hardness would be obtained by repeating ECAP process.Increasing the electrical conductivity of the ECAP samples indicatesthat there is no dislocation formation due to increasing plastic deformation in ECAP process


2019 ◽  
Vol 3 (2) ◽  
pp. 36
Author(s):  
Yu Bai ◽  
Xiaoqing Zhang ◽  
Kenong Xia

Equal channel angular pressing (ECAP) has been shown to be a promising method for producing biocomposites from wood particles. However, severe plastic deformation during ECAP would cause considerable cracking when consolidation is carried out without a binder. In this study, the processing conditions were investigated for ECAP of hardwood particles into bulk biocomposites without any additives. Crack formation and wood cell deformation were examined in conjunction with thermal stability and crystallinity of the biocomposites. In comparison with hot pressing without severe shearing, a decrease in crystallinity and severe deformation of wood cells occurred during ECAP. Improved processability and homogeneous deformation would occur at high ECAP temperature (e.g., 210 °C) or low ECAP speed (e.g., 10 mm/min), leading to reduced crack formation in the ECAP-produced biocomposites. Despite its tendency to cause periodic cracking, effective plastic deformation in the regions between cracks was shown to improve interparticle binding. Ongoing research points to the potential achievement of crack-free hardwood (HW) consolidated without a binder, leading to significantly enhanced strength.


2013 ◽  
Vol 594-595 ◽  
pp. 896-901
Author(s):  
Aminnudin ◽  
Pratiko ◽  
Anindito Purnowidodo ◽  
Yudy Surya Irawan ◽  
Shigeyuki Haruyama ◽  
...  

Grain size and homogeneity are influence to aluminium properties, Equal channel angular pressing (ECAP) can produce aluminium with ultra fine grain Size (UFG). The grain size is depends on ECAP Dies geometry (Channel angle Φ, Fillet radius ψ) and friction, taguchi method used to find the optimum dies geometry its can produce smaller grain size and homogeny. Modeling done with channel angels 90, 105 and 120°, fillet radius (inside) 1.5, 5,0 and 10 mm ; fillet radius (outside) 1.5, 5,0 and 10 mm and friction 0, 0,025 and 0,05. Modeling used L9 taguchi matrix, the most homogeny dies is ECAP dies with channel angel 105°, fillet radius (inside) 10 mm ; fillet radius (outside) 0 mm and friction 0,025


Sign in / Sign up

Export Citation Format

Share Document