Synthesis of Fe3O4 Nanoparticles to Synthesize Bundles of Single-Walled Carbon Nanotubes

2015 ◽  
Vol 1109 ◽  
pp. 108-112
Author(s):  
Wei Wen Liu ◽  
Azizan Aziz ◽  
Siang Piao Chai ◽  
Abdul Rahman Mohamed ◽  
U. Hashim ◽  
...  

Magnetite (Fe3O4) nanoparticles were synthesized in aqueous solutions without any surfactants. The Fe3O4 nanoparticles are nearly spherical and have an average diameter of 10.33nm and a narrow size distribution. Bundles of single-walled carbon nanotube (SWCNT) were synthesized using these Fe3O4 nanoparticles supported by MgO. Transmission electron microscopy (TEM) images show that tremendous amount of bundles SWCNT with uniform diameters were produced. The average diameter of bundles SWCNT is 1.22nm. Raman spectrum shows that well graphitized SWCNTs were formed based on the low ratio of ID/IG. Fe3O4 nanoparticles could be an effective active metal to synthesize large quantity bundles of SWCNT.

2007 ◽  
Vol 561-565 ◽  
pp. 655-658 ◽  
Author(s):  
Qiang Zeng ◽  
Jennifer Luna ◽  
Y. Bayazitoglu ◽  
Kenneth Wilson ◽  
M. Ashraf Imam ◽  
...  

This study is considered as a method for producing multifunctional metal composite materials by using Single-walled Carbon Nanotubes (SWNTs). In this research, various metals (Ni, Cu, Ag ) were successfully deposited onto the surface of SWNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coating on SWNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified single-walled carbon nanotubes. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The application of coated SWNTs in Titanium will be discussed in this paper.


2006 ◽  
Vol 514-516 ◽  
pp. 1131-1134
Author(s):  
Jeremy Sloan ◽  
Robin Carter ◽  
Angus I. Kirkland ◽  
Rüdiger R. Meyer ◽  
Alexis Vlandas ◽  
...  

Restored high resolution transmission electron microscopy (HRTEM) images have been recorded from 1D semiconductor crystals formed within narrow diameter (ca. 1.4 nm) single walled carbon nanotubes (SWNTs). Two unique projections were obtained from separate crystal fragments encapsulated within separate nanotubes that has facilitated the reconstruction of the three dimensional arrangement of atoms within the two encapsulated fragments.


2012 ◽  
Vol 454 ◽  
pp. 63-66
Author(s):  
Xia Yuan ◽  
Yu Liang An ◽  
Chen Zhang ◽  
Hong Chao Sui

Single-walled carbon nanotubes (SWNTs) have been successfully prepared from starch by arc discharge technique. The SWNTs products were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The growth mechanism of the SWNTs was discussed in terms of the starch. The results demonstrate that starch is one of the suitable precursor for making SWNTs by arc discharge method.


MRS Advances ◽  
2017 ◽  
Vol 2 (02) ◽  
pp. 89-95
Author(s):  
Hoshimitsu Kiribayashi ◽  
Takayuki Fujii ◽  
Takahiro Saida ◽  
Shigeya Naritsuka ◽  
Takahiro Maruyama

ABSTRACT We carried out single-walled carbon nanotube (SWCNT) growth using a Rh catalyst on Al2O3 buffer layers that were prepared by three different methods based on electron beam (EB) evaporation: native oxidation of Al layer deposited by EB ([EB(Al)+NO]-Al2O3 layer); thermal oxidation of Al layer deposited by EB ([EB(Al)+TO]-Al2O3 layer); EB deposition of Al2O3 layer ([EB(Al2O3)]-Al2O3 layer). SWCNT yield was the largest for the [EB(Al2O3)]-Al2O3 layer, while SWCNTs were not grown on the [EB(Al)+NO]- Al2O3 layer. Transmission electron spectroscopy showed that most of Rh particle sizes were distributed between 1.0 and 2.6 nm on the [EB(Al)+NO]- Al2O3 and [EB(Al2O3)]- Al2O3 layers, while they were distributed between 1.8 and 4.2 nm on the [EB(Al)+TO]- Al2O3 layer. This result indicates that surface migration of Rh catalysts was suppressed on the [EB(Al2O3)]- Al2O3 layer, resulting in the largest SWCNT yield. On the other hand, enlargement of Rh catalyst particles occurred on the [EB(Al)+TO]- Al2O3 layer, leading to the reduction of SWCNT yield. Taking into account our previous study, inward diffusion of Rh catalysts into the Al2O3 buffer layer inhibited SWCNT growth on the [EB(Al)+NO]- Al2O3 layer, although enlargement of Rh particle size was suppressed. We also carried out ultra-violet photoemission measurements for Rh catalysts on the [EB(Al)+TO]- Al2O3 and [EB(Al2O3)]- Al2O3 layers and investigated the electronic states of Rh catalysts on them.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 407-411
Author(s):  
JUN JIAO ◽  
LIFENG DONG ◽  
VACHARA CHIRAYOS ◽  
JOCELYN BUSH ◽  
JAMES HEDBERG

Two effective methods for dispersion and alignment of single-walled carbon nanotubes (SWCNTs) were developed. One is the floating-potential dielectrophoresis (FPD) method, which can achieve the alignment of individual SWCNTs between two electrodes with high yield (more than 30%) and high repeatability. The second is the gas blow method. Using the shear forces associated with a rapidly moving fluid, SWCNTs were positioned in a direction corresponding to the flow vector of the fluid. This technique shows great potential for scaling up the displacement of SWCNTs with controlled orientations. Various dispersion agents including ethanol, dichlorobenzene, sodium dodecyl sulfate (SDS) and DNA were investigated with these two methods. It was found that SDS was the most effective dielectric medium used for FPD dispersion and alignment of SWCNTs. The result of electric measurement for the individual SWCNTs aligned between two electrodes suggests that, using the FPD method, both metallic and semiconducting SWCNTs could be aligned between the electrodes. The individual SWCNT resistances measured range from 20 KΩ to 5 MΩ suggesting a high contact resistance between an aligned SWCNT and metal electrodes. High resolution transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterization reveal DNA molecules wrapped around the SWNCTs after the dispersion process which may affect the intrinsic properties of SWCNTs.


2005 ◽  
Vol 901 ◽  
Author(s):  
Pedro MFJ Costa ◽  
Narun Thamavaranukup ◽  
Thomas Rutherford ◽  
Steffi Friedrichs ◽  
Jeremy Sloan ◽  
...  

AbstractSingle walled carbon nanotubes have been filled with a variety of metal oxides and the structural and morphological characteristics of the metal_oxide@SWNT composites studied. Advanced techniques of software aberrations correction for transmission electron microscopy were used for characterisation. This research shows that, despite their higher reactivity compared to salts such as halides, oxides can be encapsulated within SWNTs with some compounds attaining remarkable filling yields.


2008 ◽  
Vol 8 (11) ◽  
pp. 6065-6074 ◽  
Author(s):  
Henning Richter ◽  
Meri Treska ◽  
Jack B. Howard ◽  
John Z. Wen ◽  
Sebastien B. Thomasson ◽  
...  

Since its invention in 1991, premixed combustion synthesis of fullerenic materials has been established as the major industrial process for manufacturing of these materials. Large-scale production of fullerenes such as C60, C70 and C84 has been implemented. More recently, combustion technology has been extended to the targeted synthesis of single-walled carbon nanotubes (SWCNT). Addition of catalyst precursor and operation at well-controlled fuel-rich but non-sooting conditions are required. Extensive parametric studies have allowed for the optimization of the formation of high-quality SWCNT. Purification techniques previously reported in the literature have been adjusted and used successfully for the nearly complete removal of metal and metal oxide. Material has been characterized using Raman spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Correlations between process conditions and nanotube properties such as length have been established. Product reproducibility and process scalability of the combustion process have been demonstrated. Sample preparation was found to affect significantly the apparent characteristics of nanotubes as seen in electron microscopy images.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manivannan Kokarneswaran ◽  
Prakash Selvaraj ◽  
Thennarasan Ashokan ◽  
Suresh Perumal ◽  
Pathikumar Sellappan ◽  
...  

AbstractUnique black coatings were observed in the inner wall of pottery shreds excavated from Keeladi, Tamilnadu, India. Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to understand the nature of the coating. The analysis revealed the presence of single, multi-walled carbon nanotubes and layered sheets in the coating. The average diameter of single-walled carbon nanotube found to be about 0.6 ± 0.05 nm. This is the lowest among the single-walled carbon nanotubes reported from artefacts so far and close to the theoretically predicted value (0.4 nm). These nanomaterials were coated in the pottery’s that date backs to sixth century BC, and still retain its stability and adhesion. The findings of nano materials in the pre-historic artifacts, its significance and impact are discussed in this article.


1999 ◽  
Vol 593 ◽  
Author(s):  
H.Y. Kim ◽  
W.B. Choi ◽  
N.S. Lee ◽  
D.S. Chung ◽  
J.H. Kang ◽  
...  

ABSTRACTSingle-walled carbon nanotubes (SWNTs) were purified and cut into short length by the liquid phase oxidation using the typical oxidants such as HNO3, H2SO4 and their mixture. The SWNTacid solutions were refluxed at high temperature, filtered on poly tetra-fluoro ethylene (PTFE) filter paper. rinsed with distilled water, and then dried at room temperature. In order to find optimum purifying condition, acid solutions were made by mixing nitric / sulfuric acid by the different volume ratio. The reaction time was also varied from 1h to 6h. Through this method, purified SWNTs with the length of less than 2μm were successfully obtained, which was confirmed by scanning electron microscopy (SEM). From transmission electron microscopy (TEM) analysis, it was verified that SWNTs were purified with little damage on surface and metal catalysts were efficiently removed when sulfuric acid was mixed, which was also confirmed by energy disperse spectrum analysis (EDS). Moreover, size distribution of the purified SWNTs was characterized with Field Flow-Fractionation (FFF) method.


Sign in / Sign up

Export Citation Format

Share Document