scholarly journals Development of Design Structure Matrix of Product Architecture Case Study: Multi Purpose CNC Router

2015 ◽  
Vol 1115 ◽  
pp. 606-609
Author(s):  
Irfan Hilmy ◽  
Erry Yulian T. Adesta ◽  
Nur’atiyah Najwa binti Samsul Bahrim ◽  
Aini Nurrasyidah binti Azhar ◽  
Siti Fatimah binti Mohd Shahar

In developing any engineering product, it is crucial to develop product architecture of the system. An engineering team who responsible in developing different module should work together in order to obtain product architecture as a blueprint of the project. It is common to breakdown system or product into smaller elements as follows: subsystems, modules and component and define the interactions between components and subsystems. In order to achieve the performance of the system as a whole, these elements must be integrated to work together. One of the method to develop product architecture is Design Structure Matrix (DSM). The use of DSM for Development of Product architecture with case study a CNC router platform is presented. Using DSM, order of product development can be optimized and any form of wastes can be eliminated in the design stage.

Author(s):  
Andrew H. Tilstra ◽  
Carolyn C. Seepersad ◽  
Kristin L. Wood

Product architecture has implications for product success that go beyond meeting basic customer needs or performance requirements. The mapping of functions to components and the interactions between them impacts the potential for using all or part of the product to build a family of products, the ease with which the product can be redesigned to meet previously unanticipated customer needs, and the way in which engineering design changes propagate during the design process. For practical applications of design theory, it would be beneficial to have a comprehensive and robust model that captures product architecture and can be used for multiple purposes. Some fields of design research have used variations of a Design Structure Matrix (DSM) to record the interactions between elements of a system. The High Definition Design Structure Matrix (HDDSM) has been proposed as a model that limits the subjectivity required from designers by capturing the existence of very specific types of interactions between product components. This work evaluates the repeatability of HDDSM models created by different examiners for a set of electromechanical products. The inter-rater agreement between HDDSM models created by pairs of examiners is determined by calculating the kappa agreement index for each type of component interaction. The results of this initial study demonstrate very encouraging levels of repeatability across examiners for different types of products. Based on these results, recommendations are provided for creating objective models of product architecture and using such models for a number of exploratory research tasks, such as automated analysis of design guidelines.


2018 ◽  
Vol 192 ◽  
pp. 01037
Author(s):  
Tanongsak Kongsin ◽  
Sakon Klongboonjit

In this study, components of the machine are analyzed to group all components into modular groups with a case study of a soil mixing machine. The study begins by creating a design structure matrix of all components. Next, the design structure matrix is transferred into a distance matrix of all components with Jaccard method. After that, the equation of complete linkage must be applied to change the distance matrix to a tree dendrogram for showing the relationship of machine components and dependent coefficient. With this tree dendrogram, six clusters are arranged:- the 1st cluster has 8 modules at the lowest dependent coefficient, the 2nd cluster has 7 modules, the 3rd cluster has 6 modules, the 4th cluster has 5 modules, the 5th cluster has 4 modules, and the 6th cluster has 2 modules at the highest dependent coefficient. Finally, the 1st cluster with 8 modules is considered to be the most proper cluster for this soil mixing machine by applying the repeating method to analyze all six clusters.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yan-pu Yang ◽  
Deng-kai Chen ◽  
Rong Gu ◽  
Yu-feng Gu ◽  
Sui-huai Yu

Consumers’ Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.


2011 ◽  
Vol 128-129 ◽  
pp. 1468-1471 ◽  
Author(s):  
Ji Hong Yan ◽  
Chun Hua Feng

With increasing sustainable development consciousness, sustainable design plays an important role not only in design phase but also in manufacturing process. This paper proposes a modular design methodology for achieving sustainable design as well as fulfilling functional requirements. Factors related to function and sustainability of products such as material, manufacturability, component life and so on are defined as modular drivers. Design structure matrix, a structured method which has advantages on representing and analyzing interaction relations among system elements, is employed to establish correlation matrix between components. K-means algorithm is used to integrate the basic components into design modules based on their correlation distance. Furthermore, an evaluation model is established for assessing sustainability of modular products. Finally, a reduction gear is used as a case study example.


2020 ◽  
Vol 6 ◽  
Author(s):  
Ívar Örn Arnarsson ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

The problem at hand is that vast amount of data on industrial changes is captured and stored; yet the present challenge is to systematically retrieve and use them in a purposeful way. This paper presents an industrial case study where complex product development processes are modeled using the design structure matrix (DSM) to analyze engineering change requests sequences. Engineering change requests are documents used to initiate a change process to enhance a product. Due to the amount of changes made in different projects, engineers want to be able to analyze these change processes to identify patterns and propose the best practices. The previous work has not specifically explored modeling engineering change requests in a DSM to holistically analyze sequences. This case study analyzes engineering change request sequences from four recent industrial product development projects and compares patterns among them. In the end, this research can help to identify and guide process improvement work within projects.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Shqipe Buzuku ◽  
Javier Farfan ◽  
Kari Harmaa ◽  
Andrzej Kraslawski ◽  
Tuomo Kässi

Design, structure, modelling, and analysis of complex systems can significantly benefit from a systematic approach. One way to address a complex system using a systematic approach is to combine creative and analytical methods, such as general morphological analysis and design structure matrix. The aim is to propose a framework to address complex systems in two stages: first, formulation and generation of alternatives through general morphological analysis, and second, improvement and integration with design structure matrix for sequence optimization and cluster analysis. Moreover, general morphological analysis is further optimized through a novel sensitivity analysis approach reducing up to 80% the iteration time. The proposed approach is showcased in a case study of sustainable policy formulation for a wastewater treatment plant at a pulp and paper industry in Brazil. The results show that it is possible to generate a solution space that highlights the best possible combinations of the given alternatives while also providing an optimal sequence and grouping for an optimized implementation. The paper contributes to the field of conceptual modelling by offering a systematic approach to integrate sustainability.


Author(s):  
Simon Li ◽  
Li Chen

In literature, design structure matrix (DSM), which is a square matrix, has been widely used to address single-domain dependency relationships (e.g., product architecture, process workflow, and organization structure). To extend the DSM efforts, a rectangular matrix becomes a logical format to capture and analyze cross-domain dependency relationships, namely, domain mapping matrix (DMM) [1]. In this context, this paper proposes a unified framework for decomposition of DSM and DMM. The unified framework consists of four methodological phases to offer the functions of DSM clustering, DSM sequencing, and DMM decomposition. To support the development of this framework, various decomposition-related techniques from applied mathematics and engineering design are reviewed. Three matrix examples have been used to illustrate the framework’s applicability.


Sign in / Sign up

Export Citation Format

Share Document