Sustainability-Oriented Product Modular Design Using Design Structure Matrix (DSM) Method

2011 ◽  
Vol 128-129 ◽  
pp. 1468-1471 ◽  
Author(s):  
Ji Hong Yan ◽  
Chun Hua Feng

With increasing sustainable development consciousness, sustainable design plays an important role not only in design phase but also in manufacturing process. This paper proposes a modular design methodology for achieving sustainable design as well as fulfilling functional requirements. Factors related to function and sustainability of products such as material, manufacturability, component life and so on are defined as modular drivers. Design structure matrix, a structured method which has advantages on representing and analyzing interaction relations among system elements, is employed to establish correlation matrix between components. K-means algorithm is used to integrate the basic components into design modules based on their correlation distance. Furthermore, an evaluation model is established for assessing sustainability of modular products. Finally, a reduction gear is used as a case study example.

Author(s):  
Sang-ok Park ◽  
Jongmin Yoon ◽  
Hochan An ◽  
Jeonggyu Park ◽  
Gyung-Jin Park

As the demands of customers in the modern industry increased, the number of products, and the variety of components has increased. These issues have led to difficulties in product development and production. Modularization of products has advantages such as cost reduction, product development time reduction, and production time reduction. Modular design of products has been studied in the design activities of the modern industry. In this study, a modular design method is proposed to design a modular product based on axiomatic design (AD) and design structure matrix (DSM). AD and DSM are efficiently integrated into the proposed method. Functional requirements and design parameters are defined based on the Independence Axiom of AD, and the zigzagging process of AD is employed for the decomposition of the functional requirements (FRs) and design parameters (DPs). The design sequence is established based on the design matrix. Coupled or functionally close DPs are grouped into a module (Module 1). These modules are efficiently used in the design sequence. DSM is used to modularize the design parameters of the lowest level of axiomatic design. DSM is constructed based on physical interfaces and numerical clustering algorithms are used to identify strongly related components. They are grouped into a module (Module 2). Module 2 is exploited for production and management. Therefore, these two modules for different purposes can be used to increase efficiency in the design and production process. The proposed method is applied to two automobile parts such as the suspension system and cooling system. The results are discussed from the viewpoint of usefulness.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Wang ◽  
Bo Luo

The development of customized service is an important way to transform and upgrade China’s mining industry. However, in practice, there remain problems, such as the slow market response speed of service providers and the contradiction between the large-scale development of service providers and the personalized service needs of service demanders. This paper uses the theory and method of service modular design to solve these problems and explores the process-based service modular design method. Service modular design depends largely on the determination of the relationship between service activities and the reasonable division of modules. However, previous research has rarely made use of modular design methods and modeling tools in the mining service context. At the same time, evaluations of the relationship between service activities relying on knowledge and those relying on experience have been inconclusive. Therefore, this paper proposes a service modularization design method based on the fuzzy relation analysis of a design structure matrix (DSM) that solves the optimal module partition scheme. Triangular fuzzy number and fuzzy evidence theory are used to evaluate and fuse the multidimensional and heterogeneous relationship between service activities, and the quantitative processing of the comprehensive relationship between service activities is carried out. On this basis, the service module structure is divided, followed by the construction of the mathematical programming model with the maximum sum of the average cohesion degree in the module and the average coupling degree between modules as the driving goal. The genetic algorithm is used to solve the problem, and the optimal module division result is obtained. Finally, taking the service modular design of SHD coal production enterprises in China as an example, the feasibility of the proposed method is verified.


2015 ◽  
Vol 1115 ◽  
pp. 606-609
Author(s):  
Irfan Hilmy ◽  
Erry Yulian T. Adesta ◽  
Nur’atiyah Najwa binti Samsul Bahrim ◽  
Aini Nurrasyidah binti Azhar ◽  
Siti Fatimah binti Mohd Shahar

In developing any engineering product, it is crucial to develop product architecture of the system. An engineering team who responsible in developing different module should work together in order to obtain product architecture as a blueprint of the project. It is common to breakdown system or product into smaller elements as follows: subsystems, modules and component and define the interactions between components and subsystems. In order to achieve the performance of the system as a whole, these elements must be integrated to work together. One of the method to develop product architecture is Design Structure Matrix (DSM). The use of DSM for Development of Product architecture with case study a CNC router platform is presented. Using DSM, order of product development can be optimized and any form of wastes can be eliminated in the design stage.


2018 ◽  
Vol 192 ◽  
pp. 01037
Author(s):  
Tanongsak Kongsin ◽  
Sakon Klongboonjit

In this study, components of the machine are analyzed to group all components into modular groups with a case study of a soil mixing machine. The study begins by creating a design structure matrix of all components. Next, the design structure matrix is transferred into a distance matrix of all components with Jaccard method. After that, the equation of complete linkage must be applied to change the distance matrix to a tree dendrogram for showing the relationship of machine components and dependent coefficient. With this tree dendrogram, six clusters are arranged:- the 1st cluster has 8 modules at the lowest dependent coefficient, the 2nd cluster has 7 modules, the 3rd cluster has 6 modules, the 4th cluster has 5 modules, the 5th cluster has 4 modules, and the 6th cluster has 2 modules at the highest dependent coefficient. Finally, the 1st cluster with 8 modules is considered to be the most proper cluster for this soil mixing machine by applying the repeating method to analyze all six clusters.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yan-pu Yang ◽  
Deng-kai Chen ◽  
Rong Gu ◽  
Yu-feng Gu ◽  
Sui-huai Yu

Consumers’ Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.


2020 ◽  
Vol 6 ◽  
Author(s):  
Ívar Örn Arnarsson ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

The problem at hand is that vast amount of data on industrial changes is captured and stored; yet the present challenge is to systematically retrieve and use them in a purposeful way. This paper presents an industrial case study where complex product development processes are modeled using the design structure matrix (DSM) to analyze engineering change requests sequences. Engineering change requests are documents used to initiate a change process to enhance a product. Due to the amount of changes made in different projects, engineers want to be able to analyze these change processes to identify patterns and propose the best practices. The previous work has not specifically explored modeling engineering change requests in a DSM to holistically analyze sequences. This case study analyzes engineering change request sequences from four recent industrial product development projects and compares patterns among them. In the end, this research can help to identify and guide process improvement work within projects.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Shqipe Buzuku ◽  
Javier Farfan ◽  
Kari Harmaa ◽  
Andrzej Kraslawski ◽  
Tuomo Kässi

Design, structure, modelling, and analysis of complex systems can significantly benefit from a systematic approach. One way to address a complex system using a systematic approach is to combine creative and analytical methods, such as general morphological analysis and design structure matrix. The aim is to propose a framework to address complex systems in two stages: first, formulation and generation of alternatives through general morphological analysis, and second, improvement and integration with design structure matrix for sequence optimization and cluster analysis. Moreover, general morphological analysis is further optimized through a novel sensitivity analysis approach reducing up to 80% the iteration time. The proposed approach is showcased in a case study of sustainable policy formulation for a wastewater treatment plant at a pulp and paper industry in Brazil. The results show that it is possible to generate a solution space that highlights the best possible combinations of the given alternatives while also providing an optimal sequence and grouping for an optimized implementation. The paper contributes to the field of conceptual modelling by offering a systematic approach to integrate sustainability.


Author(s):  
Xianfu Cheng ◽  
Zhihu Guo ◽  
Xiaotian Ma ◽  
Tian Yuan

Modular design is a widely used strategy that meets diverse customer requirements. Close relationships exist between parts inside a module and loose linkages between modules in the modular products. A change of one part or module may cause changes of other parts or modules, which in turn propagate through a product. This paper aims to present an approach to analyze the associations and change impacts between modules and identify influential modules in modular product design. The proposed framework explores all possible change propagation paths (CPPs), and measures change impact degrees between modules. In this article, a design structure matrix (DSM) is used to express dependence relationships between parts, and change propagation trees of affected parts within module are constructed. The influence of the affected part in the corresponding module is also analyzed, and a reachable matrix is employed to determine reachable parts of change propagation. The parallel breadth-first algorithm is used to search propagation paths. The influential modules are identified according to their comprehensive change impact degrees that are computed by the bat algorithm. Finally, a case study on the grab illustrates the impacts of design change in modular products.


Sign in / Sign up

Export Citation Format

Share Document