Spinel Structured Iron Gallium Oxynitride - Fe2GaO2N2

2021 ◽  
Vol 1160 ◽  
pp. 45-50
Author(s):  
Savitha Kadencheri Unnikrishnan

A facile method was successfully developed to prepare Ternary oxynitride of iron and gallium. Initially mixed oxyhydroxides of Iron and gallium were prepared by co-precipitation method. Then this was nitrided using urea and agar in presence of ammonia at 900°C, which gave mixed cation oxynitride . This mixed oxynitride was characterized using XRD, XPS and SEM. The X-ray diffraction pattern of the Fex’GaxOyNz phase was refined within the cubic spinel structure (space group Fd-3m), using the fullprof program. On assuming 3+ oxidation state for half of iron and whole of gallium, the chemical composition of the oxynitride spinel determined by the X-ray analysis is Fe2GaN2O2. The refinement using these parameters resulted in a good fit to the observed diffraction data, with a crystallographic R factor of 5.92. This ternary oxynitride of iron and gallium is a novel material which can give unique optical and magnetic properties.

2015 ◽  
Vol 1101 ◽  
pp. 286-289 ◽  
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno

Gallic acid-modified magnetites were synthesized by one and two-step reactions via the newly developed sonochemical co-precipitation method. The two-step reaction included the formation of magnetite powder and mixing the magnetite powder with gallic acid solution, while the one-step reaction did not go through the formation magnetite powder. The obtained gallic acid-modified magnetites were characterized by the Fourier Transform Infrared (FTIR) spectroscopy, the X-Ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM). More over, the magnetic properties were studied by using a Vibrating Sample Magnetometer (VSM). The characterization results showed that there were differences in crystalinity, surface morphology and magnetic properties of products that were formed by one and two-step reactions.


2021 ◽  
Vol 317 ◽  
pp. 217-226
Author(s):  
Ismaila Abdullahi ◽  
Ismail Zainol

Chitosan-hydroxyapatite composite doped with strontium was synthesised via in situ co-precipitation method. Physicochemical properties of the composite obtained were analysed using X-ray diffraction (XRD), infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and Thermogravimetry with differential thermal analysis (DT-TGA). The synthesized composite was subjected to bioactivity studies in simulated body fluid (SBF). The calcium release from the sample in SBF was measured using atomic absorption spectroscopy (AAS). The physicochemical properties and bioactivity of the novel composite was compared with that of hydroxyapatite, strontium doped hydroxyapatite and chitosan hydroxyapatite. The in vitro bioactivity studies of the novel composite showed that it has a higher release of Ca2+ in the SBF compared to the other samples. The novel material was also found to induce more Ca2+ deposition after 28 days of immersion in the SBF. Hence, the novel composite material has the potential to be used as biomaterials for clinical application.


2021 ◽  
Vol 18 (1) ◽  
pp. 37-47
Author(s):  
Eman S. Al-Hwaitat ◽  
Mohammad K. Dmour ◽  
Ahmad S. Masadeh ◽  
Ibrahim Bsoul ◽  
Yazan Maswadeh ◽  
...  

Barium hexaferrite (BaFe12O19; M-type; BaM) is an important, cost effective magnetic material for permanent magnet applications. The magnetic properties of the prepared samples, and the purity of the BaM phase depend critically on the synthesis route and experimental conditions. In this study, BaM hexaferrites were prepared by co-precipitation method using two different values of pH for the precursor solutions (11.0 and 12.5), and sintering pellets of the co-precipitates at 860, 920 and 990°C.The prepared samples were characterized using X-ray diffraction and magnetic measurements. X-ray diffraction patterns indicated that the samples prepared with pH = 12.5 consisted of a single BaM phase at all sintering temperatures. However, the patterns of the samples with pH = 11.0 did not reveal the existence of BaM at 860°C, whereasa major BaM phase (86 – 87 wt.%) was observed at 920 and 990°C with a minor α-Fe2O3 phase. The thermo magnetic curves confirmed the BaM magnetic phase in the samples. The hysteresis loops of the BaM samples showed characteristics of hard magnetic materials with relatively high saturation magnetization. Analysis of the magnetic data indicated an intrinsic coercivity Hci~ 5 kOe for all samples, and a saturation specific magnetization in the range σs = 56.0 – 66.3 emu/g, which are suitable for permanent magnet applications. The practical coercivity (HcB), residual induction (Br) and maximum energy product (BH)max of the samples with pH = 12.5 are higher than those of the samples with pH = 11.0, and the highest magnetic parameters of HcB = 1871 Oe, Br = 2384 G, and (BH)max = 8.92 kJ/m3 were observed for the sample with pH = 12.5 and sintered at 860°C.


2012 ◽  
Vol 510-511 ◽  
pp. 221-226 ◽  
Author(s):  
M. Akram ◽  
M. Anis-ur-Rehman ◽  
M. Mubeen ◽  
M. Ali

Non toxicity, bio compatibility and nanometer sizes regime which is comparable to the size of a cell, makes nanocrystalline Co ferrites particles very proficient. In the present research Zn doped cobalt ferrites were prepared by the chemical co-precipitation method and characterized by X-ray diffraction (XRD) at room temperature for structural analysis. X-ray diffraction patterns confirmed the FCC spinel structure of synthesized particles. Crystallite sizes were calculated from the most intense peak (311) using the Debye-Scherrer formula. The obtained crystallite sizes were in nanometer range for all the samples synthesized at reaction temperature of 70°C. Then samples were sintered at 550°C for 2 hours, characterized again by X-ray diffraction at room temperature. The crystallite sizes and lattice constants for all the samples were calculated again from the data obtained by XRD. DC electrical resistivity and AC electrical transport properties were analyzed. The magnetic properties such as coercivity (Hc) and remanence (Mr) of Co1-xZnxFe2O4for x = 0.0, 0.2, 0.4 were measured at room temperature by vibrating sample magnetometer. Coercivity and remanence were found maximum with minimum value of Zn in Co1-xZnxFe2O4.Observed structural and conduction properties of synthesized nanomaterials were correlated.


Author(s):  
Chinh

CuxMg1.xFe2O4 nanoparticles were successfully synthesized by co-precipitation. The samples were calcined at 900 oC for 3 h and X-ray diffraction analysis showed that Cu0.5Mg0.5Fe2O4 had a single phase cubic spinel structure, while formation of secondary phase of Fe2O3 was observed in XRD patterns of CuFe2O4, MgFe2O4. The saturation magnetization (Ms) of Cu0.5Mg0.5Fe2O4 is in between the saturation magnetization values of CuFe2O4 and MgFe2O4 nanoparticles, CuFe2O4 is a ferromagnetic material, while MgFe2O4 and Cu0.5Mg0.5Fe2O4 show superparamagnetic behavior. The synthesized spinel ferrites were fully characterized using scanning electron microscopy (SEM), FTIR spectroscopy, energy dispersive spectroscopy (EDS) and UV-vis spectrophotometry.


2009 ◽  
Vol 23 (23) ◽  
pp. 2723-2731 ◽  
Author(s):  
JUN WANG ◽  
SIHUA XIA ◽  
SHIHE CAO

Magnetite nanoparticles have been synthesized by a co-precipitation method under magnetic fields (0~1 T) at room temperature. The as-prepared samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and their microstructure analysis were evaluated on a Mössbauer spectrum. It was found that the Fe 3 O 4 samples produced under a magnetic field of 1 T had a much higher saturation magnetization (15.3 emu/g) than those produced under 0.6 T (7.56 emu/g) and 0 T magnetic fields (6.59 emu/g). This interesting result implies that magnetic fields can affect the growth of Fe 3 O 4 nanoparticles and further change the microstructure and crystallinity of Fe 3 O 4 nanoparticles. It is expected that this process could also be a promising technique to improve the magnetic properties of other magnetic materials.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Sign in / Sign up

Export Citation Format

Share Document