Oil Palm Deseeded Fruit Head Ash: Fractionation and Characterization

2021 ◽  
Vol 1160 ◽  
pp. 75-82
Author(s):  
Iroka Joseph Udeinya ◽  
Nkoyo Imelda Nubila ◽  
Uzoamaka Adaobi Okoli ◽  
Tochukwu Michael Okafor ◽  
Florence Udeinya ◽  
...  

The processing of palm oil from the fruits of the African oil palm generates an increasing amounts of solid waste. The production of beneficial products for various applications from the oil palm wastes would reduce the amount of unwanted materials produced and contribute to a healthier environment. In this research, fractions were derived from the filtrate of the oil palm deseeded fruit head ash by fractional crystallization. Their physicochemical properties, cation, and anion compositions were determined by standard methods. Three hygroscopic oil palm ash fractions, namely crystals, anhydrous, and sediment, were obtained from the filtrate of the soaked ash. The crystals fraction showed significantly higher mean values than the anhydrous and sediment in conductivity and total organic matter (p<0.0001 each), salinity (p<0.01 and p<0.0001), and total organic carbon (p<0.01), while anhydrous had higher total dissolved solids than the crystals (p<0.01) and sediments (p<0.05). pH and melting points for the crystals and anhydrous compounds were similar (11.07 and <330) and higher than that of the sediment (10.29 and 284.2). Compared to the crystals, anhydrous fractions reveal significantly lower values in iron, phosphate (p<0.01 individually), zinc, chloride, nitrate, and sulphate (p<0.05 each), while sediments had significantly higher zinc (p<0.05) and nitrate (p<0.0001) and lower iron, chloride (p<0.05 each), sulphate and phosphate (p<0.0001 respectively) mean values. From this study, the isolation of three fractions from the oil palm empty fruit bunch ash with different physicochemical properties and ionic compositions was achieved. These fractions may serve as useful resources for utilization in various fields of research and production processes.

2021 ◽  
Author(s):  
Benjamin Ezekeil Bwadi ◽  
Mohammed Bakoji Yusuf ◽  
Ibrahim Abdullahi ◽  
Clement Yakubu Giwa ◽  
Grace Audu

Water is very significant in the development of a stable community, but many societies are confronted with the challenges of poor wastes management system with indiscriminate waste disposal and bad land practices, which easily pollute water sources and consequently degrade water quality. This study was to analyze the physicochemical properties of ground water from multiple point sources in Jalingo, Taraba state of Nigeria. Water samples were collected from twenty seven (27) sites from the study area during the raining and dry seasons. The analysis was carried out to determining the physico-chemical properties of the ground water and comparing with the World Health Organization (WHO) standard for drinking water. The physicochemical properties of ground water analyzed include; odor, taste, temperature and electrical conductivity were tested in the field using water meter tester. Whereas pH, total dissolved solids, alkalinity, hardness, salinity, iron, manganese, fluoride, nitrate, nitrite, chloride, sulphate and dissolved oxygen were analyzed in the laboratory using Wagtech potable water testing equipment. The physical properties of water analyzed were temperature, odor, taste, and turbidity. Whereas the chemical properties of water analyzed were pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, hardness, salinity, iron (Fe), manganese (Mn), fluoride (F−), nitrate (NO3−), nitrite (NO2−), Chloride (Cl−), sulphate (SO42−), dissolved oxygen (DO).The result shows the range of the mean values of the temperature(26.7–33.1) oC, p H(6.5–8.9), Fe (0.01–0.08 mg/L), NO3−(0.01–38.5 mg/l), NO2−(0.01–0.09 mg/l), Mn (0.01–0.17 mg/l), F(0.01–0.82 mg/l), alkalinity(39-204 mg/l), salinity (42-508 mg/l), SO4(14-93 mg/l), total dissolved solids (6–637) mg/l, turbidity(0.4–10.6 mg/l), hardness(48-187 mg/l), and fecal coliforms(1–4)fcu/100mi, dissolved oxygen(1.1–6.87)mg/l, EC(10.99–1066)ohm/cm, Cl (10-320 mg/l). All except alkalinity and hardness are within the WHO permissible standards of quality drinking water. The highest alkalinity (204 mg/l), hardness (187 mg/l) and low dissolved oxygen (6.87 mg/l) attributed to the high concentration of dissolved salts and basic cations in the water. The methodology applied in the study was effective in analyzing the physicochemical properties of water in the study area. Therefore, it was recommended that there should be frequent water source testing by stakeholder in water resources with the view to treating the water. Policy maker should also enforce the regulation of the use of chemical fertilizers, agro-chemicals and the indiscriminate waste disposal.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 878
Author(s):  
Apinya Singkhala ◽  
Chonticha Mamimin ◽  
Alissara Reungsang ◽  
Sompong O-Thong

A sudden pH drops always inhibits the anaerobic digestion (AD) reactor for biogas production from palm oil mill effluent (POME). The pH adjustment of POME by oil palm ash addition and the biogas effluent recycling effect on the preventing of pH drop and change of the archaea community was investigated. The pH adjustment of POME to 7.5 increased the methane yield two times more than raw POME (pH 4.3). The optimal dose for pH adjustment by oil palm ash addition was 5% w/v with a methane yield of 440 mL-CH4/gVS. The optimal dose for pH adjustment by biogas effluent recycling was 20% v/v with a methane yield of 351 mL-CH4/gVS. Methane production from POME in a continuous reactor with pH adjustment by 5% w/v oil palm ash and 20% v/v biogas effluent recycling was 19.1 ± 0.25 and 13.8 ± 0.3 m3 CH4/m3-POME, respectively. The pH adjustment by oil palm ash enhanced methane production for the long-term operation with the stability of pH, alkalinity, and archaea community. Oil palm ash increased the number of Methanosarcina mazei and Methanothermobacter defluvii. Oil palm ash is a cost-effective alkali material as a source of buffer and trace metals for preventing the pH drop and the increased methanogen population in the AD process.


2021 ◽  
Author(s):  
Nick Pasiecznik

Abstract E. guineensis, the oil palm or African oil palm, is native to equatorial Africa, although the only other species in the genus (E. oleifera) is indigenous to South and Central America. E. guineensis, however, is the major economic species: fruits of E. oleifera have a much lower oil content and are used only locally (Westphal and Jansen, 1989). However, E. guineensis was introduced into South America during the time of the slave trade, and naturalized groves are reported in coastal areas of Brazil near Bélem. In the mid-1800s it was introduced to South-East Asia via the Botanic Gardens in Bogor, Indonesia. The first oil-palm estates in Sumatra (since 1911) and Malaysia (since 1917) used plant material from second- and third-generation descendants of the original Bogor palms, from which one of the breeding populations, the Deli Dura, is derived (Westphal and Jansen, 1989). After soyabean, E. guineensis is the second most important crop worldwide for the supply of edible vegetable oil. Palm oil kernel, for example, is a major agricultural export from Malaysia, and South-East Asia is the main area of production.E. guineensis yields two types of oil: palm oil from the fleshy mesocarp, and palm-kernel oil from the kernel, in a volume ratio 10:1. Most palm oil is used in food preparation (margarines, and industrial frying oils used to prepare snack foods, etc.). Palm-kernel oil is similar in composition and properties to coconut oil, and is used in confectionery, where its higher melting point is particularly useful. It is also used in the manufacture of lubricants, plastics, cosmetics and soaps. The oil palm is a monoecious, erect, single-stemmed tree usually 20-30 m high. The root system is shallow and adventitious, forming a dense mat in the top 35 cm of the soil. The main stem is cylindrical, up to 75 cm diameter. E. guineensis palm fronds are not as suitable for thatching as other palm species, as the leaflets attach to the rachis at two angles. The oil palm is indigenous to the lowland humid tropics, and thrives on a good moisture supply and relatively open conditions. It can tolerate fluctuating water-tables with periods of standing water, although continuously flooded conditions are unsuitable. Sites often selected as suitable for oil palm are swamps, riverbanks, or sites considered too moist for tropical rain forest trees. Rainfall is often the major factor limiting production in plantations: highest yields occur where rainfall is evenly distributed throughout the year, with an optimum of 150 mm per month (Westphal and Jansen, 1989). Oil palms can grow on a variety of soil types, from sandy soils to lateritic red and yellow podzols, young volcanic soils, alluvial clays and peat soils; water-holding capacity appears to be the most important soil criterion. It is a demanding crop in terms of soil nutrients. The oil palm also has potential for incorporation into agroforestry practices. Traditional oil palm management in some areas of West Africa often incorporated both pure oil palm groves (perhaps selectively retained), scattered oil palms within temporary fields, and unexploited oil palms in mixed forest (Gupta, 1993). Harvesting of fruits usually starts about 2½ years after field planting; bunches ripen throughout the year and so harvesting usually takes place at intervals of 2 to 3 weeks in any particular area. Because oil palm is so responsive to environmental conditions, yields may vary greatly. However, over the lifetime of a palm tree, yields generally rise to a maximum in the first 6-8 years (after field planting), and will subsequently decline slowly. In Malaysia and Sumatra, well-managed plantations yield between 24 and 32 tonnes/hectare of fruit bunches; the oil yield from this will be between 4.8 and 7 tonnes/hectare. Oil palm plantations are often regarded as a better use of the land than annual food crops in humid tropical areas where soils are prone to leaching: the plantations provide continuous ground cover, and the palm canopy helps protect against soil erosion. Oil palm stems are increasingly used as a raw material for paper and composite board production. This area has big prospects in wood-based industries. It is recommended that more research is undertaken into the properties and utilization. Propagation techniques, the management of pests and diseases, and genetic resources are other areas in which studies could usefully be undertaken.


2018 ◽  
Vol 67 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Gabriel Chaves ◽  
Gustavo Adolfo Ligarreto- Moreno ◽  
Daniel Gerardo Cayon-Salinas

El objetivo de este estudio fue realizar un análisis comparativo de las características físicas y químicas de racimos de genotipos de Elaeis oleifera y de sus híbridos interespecíficos OxG con Elaeis guineensis, determinando los componentes y el potencial del aceite del racimo, y la calidad de los aceites, analizando el contenido de ácidos grasos, vitamina E y carotenos. En el estudio se utilizaron racimos provenientes de inflorescencias sin polinización asistida con la presencia perimetral de E. guineensis. Se utilizó un diseño experimental completamente al azar con tres unidades experimentales, cada una conformada por tres racimos. Los mayores cuajados del fruto se encontraron en el genotipo de E. oleifera Sinú (76,53 %) y el híbrido OxG II (72,64 %). Los potenciales de extracción de aceite fueron superiores en los materiales híbridos OxG destacándose el II (20,82 %). Las palmas E. oleifera presentaron mejores perfiles de ácidos grasos, destacándose los materiales del genotipo Sinú (79,1 % de ácidos grasos insaturados) y los del híbrido II (70,2 %). Para el contenido de vitamina E se confirmó la alta calidad del aceite de los materiales de E. oleifera, sobresaliendo el genotipo Coarí (1.006,7 ppm) y el híbrido II (1.549,6 ppm); el material del genotipo Sinú registró el mayor contenido de carotenos totales (1.524,7 ppm).


2017 ◽  
Author(s):  
Chutarat Malawet ◽  
Methakarn Jarnthong ◽  
Punyanich Intharapat ◽  
Lusheng Liao ◽  
Fuquan Zhang ◽  
...  

2018 ◽  
Author(s):  
Wari Dony ◽  
Saloma ◽  
Imron Fikri Astira
Keyword(s):  
Oil Palm ◽  

Sign in / Sign up

Export Citation Format

Share Document