Dynamic Study on Vehicle Hydro-Pneumatic Suspension

2010 ◽  
Vol 139-141 ◽  
pp. 2653-2657
Author(s):  
Ling Xin Geng ◽  
Li Juan Zhang ◽  
Ren Zhi Wu

The performance of HPS directly influences the comfort of vehicle, dynamic load of wheels and travel distance of suspension. In order to describe and evaluate the performance of HPS, the structure and working principle of main parts of the HPS are introduced and analyzed in this paper firstly. Then the physical model is founded by analyzing and simplifying the structure of HPS. According to the physical model, non-linear mathematical models of HPS with dual gas-accumulators are built up and a special program is composed. The results of computer simulation are carried out through the program. Then a testing rig for HPS is designed and manufactured after rebuilding cylinders and abundant experiments are performed on the testing rig. Comparisons are drawn between the results of simulation and testing, which manifest the mathematical model of HPS built in the thesis is feasible.

2019 ◽  
Vol 91 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Marcin Chodnicki ◽  
Michal Mazur ◽  
Miroslaw Nowakowski ◽  
Grzegorz Kowaleczko

Purpose This paper aims to present a mathematical model of the dynamics of the unmanned aerial vehicle (UAV) vertical take-off and landing (VTOL). It will be used to develop control laws to a multirotor that is inherently unstable. Also, the model will be used to design algorithms to estimate the attitude of an object. Design/methodology/approach The physical model of UAV assumes that it is a rigid body with six degrees of freedom acted by forces generated by the propellers, motors, aerodynamic forces, gravity and disturbance forces. The mathematical model was described by differential equations. However, drive system (propeller, BLDC motor and BLDC motor controller) was described by six transfer functions. These transfer functions were demarcated with Matlab/Simulink identification toolbox from data received from a specially designed laboratory stand. Moments of inertia of the platform have been analytically determined and compared with empirical results from the pendulum. The mathematical model was implemented in Matlab/Simulink. Findings The paper confirms the need of designing mathematical models. Moreover, mathematical models show that some parts of the object are better to be replaced by experimental results than by equations, which is proved by the data. The paper also shows advantages of using Matlab/Simulink. What is more the simulation of the model proves that multirotor is an unstable object. Research limitations/implications The test results show that drive units are strongly dependent on ambient conditions. An additional problem is the different response of the drive set to increasing and decreasing the control signal amplitude. Next tests will be done at different temperatures and air densities of the environment, also it is need to explore drag forces. Practical implications The mathematical model is a simplification of the physical model expressed by means of equations. The results of simulation like accelerations and angular rate are noise-free. However, available sensors always have their errors and noise. To design control loops and attitude estimation algorithms, there is a need for identification of sensors’ errors and noise. These parameters have to be measured. Originality/value The paper describes a solution of correct identification of drive unit, which is a main component of the UAV.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


2020 ◽  
pp. 442-451
Author(s):  
А.V. Batig ◽  
A. Ya. Kuzyshyn

One of the most important problems that pose a serious threat to the functioning of railways is the problem of freight cars derailment. However, according to statistics, the number of cases of the derailments of freight cars in trains annually grows. Тo prevent such cases, the necessary preventive measures are developed, and to study the causes of their occurrence, a significant number of mathematical models, programs and software systems created by leading domestic and foreign scientists. Studies of such mathematical models by the authors of this work have led to the conclusion that they are not sufficiently detailed to the extent that it is necessary for analyze the reasons of its derailment. At the same time, an analysis of the causes of the rolling stock derailments on the railways of Ukraine over the past five years showed that in about 20 % of cases they are obvious, and in 7 % of cases they are not obvious and implicitly expressed. The study of such cases of rolling stock derailment during an official investigation by the railway and during forensic railway transport expertises requires the use of an improved mathematical model of a freight car, which would allow a quantitative assessment of the impact of its parameters and rail track on the conditions of railway accidents. Therefore, taking into account the main reasons that caused the occurrence of such railroad accidents over the last five years on the railways of Ukraine, the article selected the main directions for improving the mathematical model of a freight car, allowing to cover all the many factors (explicit and hidden) and identify the most significant ones regarding the circumstances of the derailment rolling stock off the track, established on the basis of a computer experiment. It is proposed in the mathematical model of a freight car to take into account the guiding force, the value of which is one of the main indicators of the stability of the rolling stock. The authors of the article noted that not taking into account the influence of the guiding forces on the dynamics of the freight car can lead to an erroneous determination of the reasons for the rolling stock derailment or even to the impossibility of establishing them.


India is a worldwide agriculture business powerhouse. Future of agriculture-based products depends on the crop production. A mathematical model might be characterized as a lot of equations that speak to the conduct of a framework. By using mathematical model in agriculture field, we can predict the production of crop in particular area. There are various factors affecting crops such as Rainfall, GHG Emissions, Temperature, Urbanization, climate, humidity etc. A mathematical model is a simplified representation of a real-world system. It forms the system using mathematical principles in the form of a condition or a set of conditions. Suppose we need to increase the crop production, at that time the mathematical model plays a major role and our work can be easier, more significant by using the mathematical model. Through the mathematical model we predict the crop production in upcoming years. .AI, ML, IOT play a major role to predict the future of agriculture, but without mathematical models it is not possible to predict crop production accurately. To solve the real-world agriculture problem, mathematical models play a major role for accurate results. Correlation Analysis, Multiple Regression analysis and fuzzy logic simulation standards have been utilized for building a grain production benefit depending model from crop production. Prediction of crop is beneficiary to the farmer to analyze the crop management. By using the present agriculture data set which is available on the government website, we can build a mathematical model.


Author(s):  
Alla A. Mussina

The article defines the basic concepts of filtration theory and provides an overview of the existing mathematical models of inhomogeneous liquids in porous media. The paper considers the Stefan problem. The number of scientific papers devoted to the study of porous structures has recently increased. This is primarily due to the fact that the prob-lems of oil and uranium production have been identified, and the solution of environmental problems is overdue. Therefore, a new device is needed to develop models of liquid filtration. With the advent and development of computer technology, it has become easier to solve problems that require numerical methods for their solution. Understanding the movement of fluids and the mechanism of dissolution of rocks under the action of acids in heterogeneous porous media is of great importance for the extraction and production of oil and the effective management of these processes. The article examines the mathematical model of the theory of isothermal filtration. Possible variants of the solva-bility of the model are shown. The research scheme consists of the output of a mathematical model, the formulation of the problem, one variant of the solution of the problem, the algorithm of the numerical method of solving the problem.


2019 ◽  
Vol 98 (3) ◽  
pp. 1795-1806 ◽  
Author(s):  
Sergii Skurativskyi ◽  
Grzegorz Kudra ◽  
Krzysztof Witkowski ◽  
Jan Awrejcewicz

Abstract The paper is devoted to the study of harmonically forced impacting oscillator. The physical model for oscillator is a cart on a guide connected to the support with springs and excited by the stepper motor. The support also is provided with limiter of motion. The mathematical model for this system is defined with the second-order piecewise smooth differential equation. Model’s nonlinearity is connected with the incorporation of dry friction and generalized Hertz contact law. Analyzing the classical Poincare sections and inter-impact sequences obtained experimentally and numerically, the bifurcations and statistical properties of periodic, multi-periodic, and chaotic regimes were examined. The development of impact-adding regime as a new nonlinear phenomenon when the forcing frequency varies was observed.


2018 ◽  
Vol 182 ◽  
pp. 01009 ◽  
Author(s):  
Valeriy Martynyuk ◽  
Oleksander Eromenko ◽  
Juliy Boiko ◽  
Tomasz Kałaczyński

The paper represents the mathematical model for diagnostics of supercapacitors. The research objectives are the problem of determining a supercapacitor technical condition during its operation. The general reliability of diagnostics is described as the methodological and instrumental reliabilities of diagnostics. The instrumental diagnostic reliability of supercapacitor includes the probabilities of errors of the first and second kind, α and β respectively. The methodological approach to increasing the reliability of supercapacitor diagnostic has been proposed, in terms of multi-parameter supercapacitor diagnostic by applying nonlinear, frequency dependent mathematical models of supercapacitors that take into account nonlinearity, frequency dispersion of parameters and the effect of transient processes in supercapacitors. The more frequencies, operating voltages and currents are applied in the supercapacitor diagnostics, the more methodological reliability of diagnostics will increase in relation to the methodological reliability of supercapacitor diagnostics when only one frequency, voltage and current are applied.


2012 ◽  
Vol 241-244 ◽  
pp. 988-992
Author(s):  
Cheng Wen Liu

Amorphous alloy material has good soft magnetic properties, so it can be used for stress measurement. At first, the working principle of the stress measurement was analyzed. Secondly its output characteristic mathematical model was established by adopting multivariate linear regression analysis method, and the simulation of the mathematical model was made based on Matlab. Finally a practice measurement with Fe-base TM—M Amorphous alloy was completed. The results of the test have showed that the stress measurement method has some characteristics of being sensitiveness to measure and simple to make a testing system, and a promising method of measuring stress.


2014 ◽  
Vol 945-949 ◽  
pp. 1461-1464
Author(s):  
Han Yu Jin ◽  
Xiu Sheng Cheng ◽  
Xiu Feng Song

The working principle of wet clutch was analyzed and the mathematical model was established for torque deliver. Experimental verification and simulation analysis was carried out for the clutch model in the situation of constant pressure engaging process. An efficiency examination of wet clutch implemented on the test rig and provided theory evidence for pressure precisely control.


Sign in / Sign up

Export Citation Format

Share Document