Friction and Wear Properties of SiC and Immerse the Copper Graphite Against 1Cr18Ni9Ti Friction Couples

2010 ◽  
Vol 146-147 ◽  
pp. 1138-1141
Author(s):  
Xiao Tian ◽  
Li De Fang ◽  
Yan Zhu

Friction and wear properties of SiC and immerse copper graphite(C/Cu) against stainless steel (1Cr18Ni9Ti) friction couples were studied under room temperature and unlubrication by pin-disc tribometer. The test shows that at sliding speed of 0.56ms-1 and normal load of 5N, 20N, the SiC/1Cr18Ni9Ti friction coefficient decreases. The immerse copper graphite shows good friction and wear behavior at load 50N, at which the copper of graphite matrix is transported to the surface from the pore of graphite matrix to form a couple of copper and copper. It is difficulties to measure volume loss. When load increased, the copper was transported to generate the film and was grinded away continuously, which the immerse copper graphite(C/Cu) volume loss increases at load 120N. The results of comparing two couples show volume loss of the couple SiC/1Cr18Ni9Ti is severe, so it is not suitable to combine a couple. The couple of immerse copper graphite (C/Cu)/1Cr18Ni9Ti is better applied at low load.

2015 ◽  
Vol 808 ◽  
pp. 137-142 ◽  
Author(s):  
Virgil Iliuţă ◽  
Minodora Rîpă ◽  
Adriana Preda ◽  
Gabriel Andrei

This paper presents an experimental evaluation of friction and wear properties of a composite material-moglice - made by Diamant Metallplastic GmbH company, from Germany. This material is a polymeric matrix reinforced with particles of cristobalite (αSiO2) and molybdenum disulphide (MoS2). The material is recommended by the manufacturer for repairing metal parts. This material was tribologically tested in dry friction conditions, on a ball on flat configuration, using the reciprocating method, on a CETR UMT-2 tribometer (Bruker Corporation). The counterpart was a steel ball. The tests were performed at room temperature in normal conditions of relative humidity of 40-60% using an average sliding speed of 3.5 mm/s. The tests were carried out at normal loads of 20, 30, 40 and 50N over a sliding distance of 100 m. The wear traces obtained were optically examined with μSCAN laser profilometer (NANOFOCUS).


2013 ◽  
Vol 747-748 ◽  
pp. 152-157 ◽  
Author(s):  
Shu Fa Chen ◽  
Cheng Long Feng ◽  
Jin Yang ◽  
Jin Song Chen

In this study, the dry sliding wear behavior of Ni-based self-lubricating wear-resistant coating was characterized under various loads at 300 . Morphologies and compositions of the worn surface were analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The experimental results showed that with the increase of load, both the frictional coefficient and wear rate decreased firstly, then slightly increased. A small amount of debris dispersed on the worn surface of the coating under low load (2 N). Since the effects of oxide layer and lubricant particles spreading onto the worn surface, the coating exhibited superior friction, and improved the wear properties under moderate load (5 N). As the load further increased, till up to 10N, the worn surface started to appear some shallow grooves and craters. This was contributed to the dispersion of carbides and lubricant particles.


1995 ◽  
Vol 117 (4) ◽  
pp. 737-741 ◽  
Author(s):  
Y. Imada ◽  
K. Nakajima

Variation in friction and wear properties with relative humidity was obtained with an Sn pin sample on a Cu disk at a constant speed (0.4 m/s), load (6.4 N), and sliding distance (5 km), using a pin-on-disk apparatus. The influence of atmosphere on the tribological properties was investigated, including moisture ranging from 4% to 95 percent relative humidity (RH). It was found that the wear loss of the pin sample is very large at low humidity of around 5 percent RH, but it decreases and reaches saturation at about 50 percent RH. Factors characterizing the friction and wear at 50 percent RH were examined along with surface analysis of the disk. The results showed that the extensive transfer of Sn from pin to disk occurs during sliding and that the friction and wear behavior is determined by the friction and wear of an Sn sliding on Sn. An examination was carried out with an Sn pin sample on a stainless steel disk in comparison with an Sn-Cu couple. It was concluded that the friction and wear behavior is determined by the properties of the film transferred to the disk surface.


2011 ◽  
Vol 130-134 ◽  
pp. 2754-2757
Author(s):  
Hao Wu ◽  
Yan Qiu Xia ◽  
Xin Feng ◽  
Xiang Yu Ge

The friction and wear properties of the DLC coatings were evaluated while being lubricated with pure PAG, PAG containing PN and ZDDP using reciprocating ball-on-disk sliding UMT tester, respectively. The morphologies of the worn surfaces of the DLC coatings were observed using a scanning electron microscope (SEM). The results indicated that the DLC coatings exhibited better tribological properties under the lubrication of PAG containing PN or ZDDP than that of pure PAG. In addition, PN and ZDDP as additives show different tribological properties. The former offers better anti-wear ability, the latter offers better friction-reducing properties.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341037
Author(s):  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YU HONG ◽  
YUCHENG WU

Friction and wear processes of AgCuX ( G , CF and AlN ) composites- CuAgV alloy friction pair and effects of different additive content in silver based composite on friction and wear behavior are studied in this paper. The microstructure of the brush wear surface is observed by SEM. The results show that when graphite content is up to 9 wt.%, Ag - Cu - CF - G composite exhibits the best wear properties; when the content of aluminum nitride is up to 0.5 wt.%, Ag - Cu - AlN - G composites has the most comprehensive performance. The wear loss of both composites arises with the increase of both pressure and speed, but when speed reaches a critical value, the increased amplitude of wear loss tends to be steady.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Mahsa Ebrahimi ◽  
Abbas Zarei-Hanzaki ◽  
A. H. Shafieizad ◽  
Michaela Šlapáková ◽  
Parya Teymoory

The present work was primarily conducted to study the wear behavior of as-received and severely deformed Al-15%Mg2Si in situ composites. The severe plastic deformation was applied using accumulative back extrusion (ABE) technique (one and three passes). The continuous dynamic recrystallization (CDRX) was recognized as the main strain accommodation and grain refinement mechanism within aluminum matrix during ABE cycles. To investigate the wear properties of the processed material, the dry sliding wear tests were carried out on both the as-received and processed samples under normal load of 10 and 20 N at room temperature, 100 °C, and 200 °C. The results indicated a better wear resistance of processed specimens in comparison to the as-received ones at room temperature. In addition, the wear performance was improved as the ABE pass numbers increased. These were related to the presence of oxide tribolayer. At 100 °C, the as-received material exhibited a better wear performance compared to the processed material; this was attributed to the formation of a work-hardened layer on the worn surface. At 200 °C, both the as-received and processed composites experienced a severe wear condition. In general, elevating the temperature changed the dominant wear mechanism from oxidation and delamination at room temperature to severe adhesion and plastic deformation at 200 °C.


1972 ◽  
Vol 94 (1) ◽  
pp. 12-18 ◽  
Author(s):  
M. T. Lavik ◽  
B. D. McConnell ◽  
G. David Moore

Results are presented for the bonding of thin, sintered, fluoride films of BaF2 and CaF2 with mono-aluminum phosphate. Friction and wear behavior of these films has been defined in terms of film compositional changes, film curing procedures, and substrate variations when subjected to varying levels of temperature and load. Mono-aluminum phosphate was found to greatly enhance the adhesion of the sintered fluoride film. There was a strong dependence of wear life at 1000 deg F on the mono-aluminum phosphate content of the film. Films containing 6 vol. percent phosphate appear to be near optimum and exhibited wear lives of 1,000,000 load cycles under sliding conditions in a dual rub-shoe device with friction coefficient levels in the order of 0.10 to 0.20. Near-optimum values were determined for cure temperature (950 deg C), and surface finish (23 μ in. rms) on rhodium-plated substrates. Graphite and gold were added to the aluminum phosphate bonded BaF2: CaF2 films. Both additives were found to lower the friction coefficient at room temperature.


2012 ◽  
Vol 476-478 ◽  
pp. 566-569
Author(s):  
Bao Guo Yuan ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Gui Hua Xu ◽  
Chun Feng Li ◽  
...  

The effects of hydrogen on friction and wear properties of Ti–6Al–4V alloy sliding against GCr15 steel were investigated through dry sliding friction and wear tests in atmosphere at room temperature. Wear mechanism was determined by studying the morphology and chemical element of worn surface using SEM and EDS. Results show that friction coefficient decreases slightly and wear rate increases after hydrogenation. Wear mechanism is discussed.


2008 ◽  
Vol 368-372 ◽  
pp. 961-963
Author(s):  
Hou An Zhang ◽  
Xiao Pin Hu ◽  
Wei Cheng Tan ◽  
Cun Shi

MoSi2 was prepared by SHS, and then pressed under 300 MPa at room temperature and sintered at 1600 °C for 1 h in a vacuum furnace. The tribological properties of MoSi2 against Al2O3 in the temperature range from 700°C to 1100 °C were investigated. Microphotographs and phases of the worn surface of MoSi2 were observed by SEM and XRD. Results showed that MoSi2 has well friction and wear properties below 900 °C. When temperature rises from 900 °C to 1000 °C, wear rate of MoSi2 is raised by 20.8% which is attribute to the change of wear mechanism. The main wear mechanisms of MoSi2 are adhesion and oxidation at high temperatures. When over 900 °C, because of ductile - brittle transition characteristic of this material, plastic deformation and fracture are also found on the worn surface of MoSi2. This leads to the high wear rate of MoSi2.


Sign in / Sign up

Export Citation Format

Share Document